
CS460
Systems for Data Management and Data Science

Prof. Anastasia Ailamaki

Data-Intensive Applications and Systems (DIAS) Lab

Query Execution

“It is better to have 100 functions operate on one data structure than to have 10 functions operate on 10 data structures”

– Alan Perlis

Consistency protocols

CAP Theorem

Gossip Protocols

Distributed/Decentraliz

ed systems

Data science software stack

Data Processing

Ressource Management & Optimization

Data Storage

Distribute
d File

Systems
(GFS)

NoSQL DB
Dynamo

Big Table
Cassandra

Distributed
Messging

systems
Kafka

Structured
Data

Spark SQL

Graph Data
Pregel, GraphLab,

X-Streem, Chaos

Machine
Learning

Batch Data
Map Reduce,

Dryad, Spark

Streaming Data
Storm, Naiad, Flink, Spark

Streaming Google Data Flow

Scheduling (Mesos,
YARN)

Query optimization

Storage
Hierarchies

& Layouts

Transaction
Management

Query
Execution

2

Today’s topic

(Simplified) DBMS Architecture

3

Recovery

Manager

Transaction

Manager Files and Access Methods

Buffer Management

Parser + Optimizer +

Plan Execution

Web

Forms

Application

Front Ends
SQL

Interface

SQL Commands

D
is

k
M

em
o

ry

Storage Management

Data

Zoom in: Query Planner/Optimizer/Executor

4How the DBMS executes a query (plan)

Plan ExecutorParser Planner
(Cost-based)

Optimizer

Abstract
Syntax
Tree

Logical
Query

Plan

Physical
Query

Plan

Query Optimizer Cost

Estimates

Query Plan

Operators are arranged in a tree.

Data flows from leaves to root.

Output of root = Query result.

5Composable algebra => composable execution

Processing model

The processing model of a DBMS defines how the system
executes a query plan.

– Different trade-offs for different workloads

• Extreme I: Tuple-at-a-time via the iterator model

• Extreme II: Block-oriented model (typically column-at-a-time)

6

Iterator Model (Volcano Model)
Each query operator implements a next function.

• On each invocation, the operator returns either a single tuple
or a marker that there are no more tuples

• next calls next on the operator’s children to retrieve and
process their tuples

7Common operator interface => composability

class Operator:

Optional<Tuple> next()

class Project:

Operator input, Expression proj

Optional<Tuple> next():

t = input.next()

if (t empty) return empty

return proj(t)

class Filter:

Operator input, Expression pred

Optional<Tuple> next():

while (true):

t = input.next()

if (t empty or pred(t)) return t

Notation

8

class Operator:

Optional<Tuple> next()

class Project:

Operator input, Expression proj

Optional<Tuple> next():

t = input.next()

if (t empty) return empty

return proj(t)

class Filter:

Operator input, Expression pred

Optional<Tuple> next():

while (true):

t = input.next()

if (t empty or pred(t)) return t

class Project:

Operator input, Expression proj

generator<Tuple> Next():

for t in input.Next():

emit proj(t)

class Filter:

Operator input, Expression pred

generator<Tuple> next():

for t in input.Next():

if pred(t) emit t

class Operator:

generator<Tuple> Next()

Example: Iterator Model

9

Example: Iterator Model (cont)

10

1

2

3

4

5

(Interpreted) Expression Evaluation

Nodes in the tree represent
different expression types:

• Comparisons (=, <, >, !=)

• Conjunction (AND), Disjunction (OR)

• Arithmetic Operators (+,-,*,/,%)

• Constant Values

• Tuple Attribute References

11

AND

>=

Attribute(B.c) Attribute(B.d) Attribute(val) Constant(100)

SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND B.c = B.d
AND B.value > 100

class Filter:

Operator input

Expression pred = (B.c = B.d) AND (B.value > 100)

generator<Tuple> next(): …

Interpreted, tuple-at-a-time processing
The DBMS traverses the tree.
For each node that it visits, it has to figure out
what the operator needs to do. Same for expressions.

This happens for every… single… tuple…

12

Many function calls

• Save/restore contents of CPU registers

• Force new instruction stream in the
pipeline → bad for instruction cache

Generic code

• Has to cover every table, datatype, query

Processing model

The processing model of a DBMS defines how the system
executes a query plan.

– Different trade-offs for different workloads

• Extreme I: Tuple-at-a-time via the iterator model

• Extreme II: Block-oriented model (typically column-at-a-time)

13

Block-oriented (aka materialization) model

Each operator processes its input all at once and emits its output
all at once

• The operator “materializes” its output as a single result.

• Often bottom-up plan processing.

14

class Operator:

Tuples Output()

class Project:

Operator input, Expression proj

Tuples Output():

out = {}

for t in input.Output():

out.append(proj(t))

return out

class Filter:

Operator input, Expression pred

Tuples Output():

out = {}

for t in input.Output():

if pred(t) out.append(t)

return out

Block-oriented Model

15

1

4

5

3

2

The (output) materialization problem – Naïve version

SELECT Name
FROM tbl

WHERE Age > 20

AND Dept = “HR”

16

tbl

𝜎𝑎𝑔𝑒>20 𝜎𝑑𝑒𝑝𝑡=𝐻𝑅
Dept

HR

HR

𝜋𝑛𝑎𝑚𝑒

Name

John

tid

1

2

tid

1

Age

22

37

tid

1

3

⋈

tid

1

Name

John

Jack

Jane

Age

22

19

37

Dept

HR

HR

IT

tbl

tid

1

2

3

The (output) materialization problem – version 2

SELECT Name
FROM tbl

WHERE Age > 20

AND Dept = “HR”

17

Name

John

Jack

Jane

Age

22

19

37

Dept

HR

HR

IT

tbl

tid

1

2

3

tbl

𝜎𝑎𝑔𝑒>20

𝜎𝑑𝑒𝑝𝑡=𝐻𝑅

𝜋𝑛𝑎𝑚𝑒
Name

John

tid

1

3

tid

1

tid

1

tid as extra filter to reduce output!
Can we reduce it further?

The (output) materialization problem – selection vector

SELECT Name
FROM tbl

WHERE Age > 20

AND Dept = “HR”

18tbl

𝜎𝑎𝑔𝑒>20

𝜎𝑑𝑒𝑝𝑡=𝐻𝑅

Name

John

Jack

Jane

Age

22

19

37

Dept

HR

HR

IT

tbl

tid

1

2

3

𝜋𝑛𝑎𝑚𝑒
Name

John

bitmap

1

0

1

bitmap

1

0

0

• Only materialize bitmap
• Perform calculations

only for relevant tuples

The (tuple) materialization problem

• When joining tables, columns can get shuffled
=> Cannot use virtual ids
=> Stitching causes random accesses

19

tid Name

1 John

3 Jane

2 Jack

⋈

tbl2 tbl1

tbl2.name=tbl1.name

tbl1.age

The order of tbl1.name entries
can change after the join!!!

tid Age

1 22

2 19

3 37

Solution 2: Sort list of tids before projection

Solution 1: Stitch columns before join

Solution 3: Use order-preserving join algorithm (eg jive-join) – but not always applicable

✓No next() calls -> no per-tuple overhead

✓Typically combined with columnar storage
▪ Cache-friendly

▪ SIMD-friendly

▪ “Run same operation over consecutive data”

✓Avoid interpretation when evaluating expressions (in most cases)
– Typically use macros to produce 1000s of micro-operators (!!!)

• selection_gt_int32(int *in, int pred, int *out)

▪ selection_lt_int32(int *in, int pred, int *out)

▪ …

- Output materialization is costly (in terms of memory bandwidth)

Block-oriented model

20

The beer analogy (by Marcin Zukowski):
How to get 100 beers

Tuple-at-a-time execution:

• Go to the store

• Pick a beer bottle

• Pay at register

• Walk Home

• Put beer in fridge

Repeat till you have 100 beers

Many unnecessary steps
21

Column-at-a-time execution

• Go to the store

• Take 100 beers

• Pay at register

• Walk Home

100 beers not easy to carry

Processing model

The processing model of a DBMS defines how the system
executes a query plan.

– Different trade-offs for different workloads

• Extreme I: Tuple-at-a-time via the iterator model

• Middle Ground: Vectorization model

• Extreme II: Block-oriented model (typically column-at-a-time)

22

The middle ground: Vectorization model

• Like iterator model, each operator implements a next function

• Each operator emit a vector of tuples instead of a single tuple

– Vector-at-a-time, aka “Carry a crate of beers at a time”!

– The operator’s internal loop processes multiple tuples at a time.

– Vector size varies based on hardware or query properties

• General idea: Vector must fit in CPU cache

23

The middle ground: Vectorization model

• Like iterator model, each operator implements a next function

• Each operator emits a vector of tuples instead of a single tuple

24

class Operator:

Optional<Vector<Tuple>> next()

class Project:

Operator input, Expression proj

Optional<Vector<Tuple>> next():

vec = input.next()

if (vec empty) return empty

out = {}

for t in vec:

out.add(proj(t))

return out

class Filter:

Operator input, Expression pred

Optional<Vector<Tuple>> next():

while (true):

vec = input.next()

if (vec empty) return vec

out = {}

for t in vec:

if pred(t): out.add(t)

return out

Vectorization model

Ideal for OLAP queries

• Greatly reduces the number of invocations per operator

• Allows for operators to use vectorized (SIMD) instructions to
process batches of tuples

• Basic model commercialized by

25

Processing model

The processing model of a DBMS defines how the system
executes a query plan.

– Different trade-offs for different workloads

• Extreme I: Tuple-at-a-time via the iterator model

• Query compilation

• Vectorization model

• Extreme II: Block-oriented model (typically column-at-a-time)

26

Remark from Microsoft Hekaton

After switching to an in-memory DBMS, the only way to increase
throughput is to reduce the number of instructions executed.

– To go 10x faster, the DBMS must execute 90% fewer instructions

– To go 100x faster, the DBMS must execute 99% fewer instructions

The only way to achieve such a reduction in the number
of instructions is through code specialization.

– Generate code that is specific to a particular task in the DBMS.

– (Currently, most code is written to be understandable)

27

Move from general to specialized code

• CPU-intensive code parts can be natively compiled if they have
a similar execution pattern on different inputs
– Access Methods

– Operator Execution

– Predicate Evaluation

• Goal: Avoid runtime decisions! Decide once, when you see the
query plan!

28

• Attribute types

=> (Inline) pointer casting instead of
data access (virtual) function calls

• Query predicate types

=> data comparisons

Query Compiler

29

Code Generator
Parser

Plan

Rewriter

Plan

Optimizer

AST

Logical

Query
Plan

Physical

Query
Plan

Query Optimizer

Native

Code

Two approaches for code generation

Transpilation

• DBMS converts a query plan into imperative source code

• Compile the produced code to generate native code with a
conventional compiler

JIT compilation

• Generate an intermediate representation (IR) of the query that
can be quickly compiled into native code.

30

Transpilation use case: The HIQUE system

• HIQUE: Holistic Integrated QUery Engine

• For a given query plan, create a C program that implements
that query’s execution plan.
→ Bake in all the predicates and type conversions.

• Advantages:
– Fewer function calls during query evaluation

– Generated code uses cache-resident data more efficiently

– Compiler optimization techniques come free

• Off-the-shelf compiler converts code into a shared object, links
it to the DBMS process, and then invokes the exec function.

31

Operator templates

32

SELECT * FROM A WHERE A.val = ? + 1

Interpreted plan Templated plan

for t in range(table.num_tuples):

tuple = get_tuple(table, t)

if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table

2. Calculate offset based on tuple

size

3. Return pointer to tuple

1. Traverse predicate tree – pull values

up

2. For tuple values, calculate the offset

of the target attribute

3. Resolve datatype (switch / virtual
call)

4. Return true/false

tuple_size = ###

predicate_offset = ###

parameter_value = ###

for t in

range(table.num_tuples):

tuple = table.data + t ∗
tuple_size

val = (tuple+predicate_offset)

if (val == parameter_value + 1):

emit(tuple)

Known at query

compile time

Integrating with the rest of the DBMS

• The generated query code can invoke any other function in the
DBMS → no need to generate code for the whole DB!

• Re-use the same components as interpreted queries.
– Concurrency control

– Logging and checkpoints

– Indexes

33

Indicative Performance [Krikellas, ICDE 2010]

34

Up to 2 orders of magnitude reported
improvement when compared to

interpreted DBs
(e.g., PostgreSQL)

The catch [Krikellas, ICDE 2010]

35

Compilation takes time!

In practice, ~1 second is not a big issue for OLAP queries

• An OLAP query may take tens to hundreds of seconds
• How about OLTP queries?
• Hint: In OLTP, we know the typical queries → pre-compile and cache

HIQUE take-home message

• Reduce function calls

• Specialized code → avoid type-checking, smaller code,
promote cache reuse

BUT

• Compilation takes time

• Sticks to the operator “legacy” abstraction

36

Transpilation use case: The HIQUE system

• HIQUE: Holistic Integrated QUery Engine

• For a given query plan, create a C program that implements
that query’s execution plan.
→ Bake in all the predicates and type conversions.

• Advantages:
– Fewer function calls during query evaluation

– Generated code uses cache-resident data more efficiently

– Compiler optimization techniques come free

• Off-the-shelf compiler converts code into a shared object, links
it to the DBMS process, and then invokes the exec function.

37

Operator templates

38

SELECT * FROM A WHERE A.val = ? + 1

Interpreted plan Templated plan

for t in range(table.num_tuples):

tuple = get_tuple(table, t)

if eval(predicate, tuple, params):

emit(tuple)

1. Get schema in catalog for table

2. Calculate offset based on tuple

size

3. Return pointer to tuple

1. Traverse predicate tree – pull values

up

2. For tuple values, calculate the offset

of the target attribute

3. Resolve datatype (switch / virtual
call)

4. Return true/false

tuple_size = ###

predicate_offset = ###

parameter_value = ###

for t in

range(table.num_tuples):

tuple = table.data + t ∗
tuple_size

val = (tuple+predicate_offset)

if (val == parameter_value + 1):

emit(tuple)

Known at query

compile time

Integrating with the rest of the DBMS

• The generated query code can invoke any other function in the
DBMS → no need to generate code for the whole DB!

• Re-use the same components as interpreted queries.
– Concurrency control

– Logging and checkpoints

– Indexes

39

Indicative Performance [Krikellas, ICDE 2010]

40

Up to 2 orders of magnitude reported
improvement when compared to

interpreted DBs
(e.g., PostgreSQL)

The catch [Krikellas, ICDE 2010]

41

Compilation takes time!

In practice, ~1 second is not a big issue for OLAP queries

• An OLAP query may take tens to hundreds of seconds
• How about OLTP queries?
• Hint: In OLTP, we know the typical queries → pre-compile and cache

HIQUE take-home message

• Reduce function calls

• Specialized code → avoid type-checking, smaller code,
promote cache reuse

BUT

• Compilation takes time

• Sticks to the operator “legacy” abstraction

42

Two approaches for code generation

Transpilation

• DBMS converts a query plan into imperative source code

• Compile the produced code to generate native code with a
conventional compiler

JIT compilation

• Generate an intermediate representation (IR) of the query that
can be quickly compiled into native code.

43

Reminder: Operator templates

44

SELECT * FROM A WHERE A.val = ? + 1

Templated plan

tuple_size = ###

predicate_offset = ###

parameter_value = ###

for t in

range(table.num_tuples):

tuple = table.data + t ∗
tuple_size

val = *(tuple+predicate_offset)

if (val == parameter_value + 1):

emit(tuple)

Interpreted plan

for t in range(table.num_tuples):

tuple = get_tuple(table, t)

if eval(predicate, tuple, params):

emit(tuple)

Operator boundaries

45

tuple_size = ###

predicate_offset = ###

(val_offset)

for t in

range(table.num_tuples):

tuple = table.data + t ∗
tuple_size

val = *(tuple+predicate_offset)

if (val == parameter_value + 1):

emit(tuple)
tuple2_size = ###

key_offset = ### (d_offset)

for t in

range(emitted.num_tuples):

t2 = emitted.data + t ∗
tuple2_size

k = hash(*(t2+key_offset))

while (probe_ht(k)):

Main:

execute(Op-1)

execute(Op-2)

…

execute(Op-n)

SELECT A.a + B.b

FROM A, B

WHERE A.val = ? + 1

AND B.c = A.d

σ

⋈

Generated code: more specialization

46

tuple_size = ###

predicate_offset = ###

(val_offset)

parameter_value = ###

for t in

range(table.num_tuples):

tuple = table.data + t ∗
tuple_size

val = *(tuple+predicate_offset)

if (val == parameter_value + 1):

emit(tuple)

tuple2_size = ###

key_offset = ### (d_offset)

for t in

range(emitted.num_tuples):

t2 = emitted.data + t ∗
tuple2_size

k = hash(*(t2+key_offset))

while (probe_ht(k)):

SELECT A.a + B.b

FROM A, B

WHERE A.val = ? + 1

AND B.c = A.d

⋈

σ

σ

tuple_size = ###
predicate_offset = ### (val_offset)
parameter_value = ###
key_offset = ### (d_offset)

for t in range(table.num_tuples):
tuple = table.data + t ∗ tuple_size
val = *(tuple+predicate_offset)
if (val == parameter_value + 1):

k = hash(*(tuple+key_offset)
while (probe_ht(k)):

emit(t2, probe_match)

⋈

Operator abstractions – The good and the bad

• Composability – Express complex logic using small modules

• Modularity – Develop each component independently

• Artificial boundaries – Cost of modularity (?)

47

Operator abstractions – Through the looking glass

Composability
Express complex logic
using small modules

Modularity
Develop each component

independently

48

Artificial boundaries

Functionality & DBMS

Dev
Query

Execution

Operator Fusion

Composability
Express complex logic
using small modules

Modularity
Develop each component

independently

49

Blurred operator boundaries

Functionality & DBMS

Dev
Query

Execution

HyPer

Generate code for plan [HyPer]

50Operator boundaries blurred – Imperative execution

for each tuple 𝑡3 in 𝑅3
for each match 𝑡2 in ⨝𝑧=𝑐[𝑡3. c]

for each match 𝑡1 in ⨝𝑎=𝑏[𝑡3. b]
output 𝑡1 ᴏ 𝑡2 ᴏ 𝑡3

for each tuple t in 𝑅1
if t.x = 7

materialize t in hash table of
⨝𝑎=𝑏
for each tuple t in 𝑅2

if t.y = 3
aggregate and materialize into Γ𝑧

for each tuple t in Γ𝑧
materialize t in hash table of ⨝𝑧=𝑐

Push-based model for query compilation
❑ Data pushed up the pipeline

❑ Materializing only at pipeline
breakers

❑ No function calls in loops =>
Compiler distributes data to
registers and increases
cache reuse.

51

for each tuple 𝑡3 in 𝑅3
for each match 𝑡2 in ⨝𝑧=𝑐[𝑡3. c]

for each match 𝑡1 in ⨝𝑎=𝑏[𝑡3. b]
output 𝑡1 ᴏ 𝑡2 ᴏ 𝑡3

for each tuple t in 𝑅1
if t.x = 7

materialize t in hash table of
⨝𝑎=𝑏
for each tuple t in 𝑅2

if t.y = 3
aggregate t in hash table of Γ𝑧

for each tuple t in Γ𝑧
materialize t in hash table of ⨝𝑧=𝑐

JIT compilation: The HyPer approach
• HyPer goal: “Keep a tuple in CPU registers as long as possible”

– Push data through execution plan

– Blur operator boundaries

• Generate code using LLVM

• LLVM: Collection of modular and reusable compiler and
toolchain technologies.

• Core component is a low-level programming language (IR) that
is similar to assembly.

• Not all of the DBMS components need to be written in LLVM IR.
→ LLVM code can make calls to C++ code.

52

LLVM example: input and output

• Produced code very close to assembly

• Compilation very fast (tens of milliseconds!) 53

int mul_add(int x, int y, int z) {
return x * y + z;

}

define i32 @mul_add(i32 %x, i32 %y, i32 %z) {
entry:
%tmp = mul i32 %x, %y
%tmp2 = add i32 %tmp, %z
ret i32 %tmp2

}

The Catch select d_tax from warehouse, district where
w_id=d_w_id and w_zip='…'

54

𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒

σ𝑤_𝑧𝑖𝑝

(more)

55

𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒

σ𝑤_𝑧𝑖𝑝

𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡

select d_tax from warehouse, district where
w_id=d_w_id and w_zip='…'

(Even more!)

56Low-level, error-prone coding

𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡

⋈𝑤𝑖𝑑=𝑑_𝑤_𝑖𝑑

select d_tax from warehouse, district where
w_id=d_w_id and w_zip='…'

σ𝑤_𝑧𝑖𝑝

Query compilation
• Pipelined query processing without interpretation cost

• Very painful to implement

• BUT: Benefits have led major DBMS (and Spark!) to implement it

57

Specialize access paths to formats

CSV JSON.bin

Query

CSV JSON.bin

DBMS
T

ra
n

sf
o

rm

Query

Processing over RAW data

Proteus
Plug-in per data source

Generic-purpose scan operator

Traditional DBMS:

Data adapts to engine

Adapting to format
• Unroll Columns

• Data Types

• Free navigation in files

59

//read field from file

raw = readNextFieldFromFile(file)

switch (schemaDataType[column])

case IntType: datum =

convertToInteger(raw)

case FloatType: datum =
convertToFloat(raw)

- fieldLength:10
- tupleLength:100
- Need fields 2 & 5

of 2nd row

moveTo(110);
readInt();
moveTo(140);
readFloat();

∀col:
if col needed:
...

skipField();
skipRest();

RAW NoDB Platform

60©2019 RAW Labs SA

Enterprise
Systems

Data
Warehouses

Data
Lakes

External
Sources

Operational
Systems

Single Query Engine

Business
Applications

Business
Intelligence

Data Cleaning
& Export

ML & AI
Data Preparation

Data
Discovery

(Social Media, Weather…)(Hadoop, S3, Azure…)(Teradata, Oracle…)(CRM, ERP, SCM…)(Sensor data, Scada…)

Unified Virtual Data Lake

Conclusion

The processing model of a DBMS defines how the system
executes a query plan.

• Tuple-at-a-time via the iterator model

• Query compilation

• Vectorization model

• Block-oriented model (typically column-at-a-time)

61

Hybrids

do exist!!!

Reading material
• COW Book chapters 12

• M. Zukowski et al: MonetDB/X100 - A DBMS In The CPU Cache. IEEE 2005:
https://ir.cwi.nl/pub/11098/11098B.pdf

• T. Neumann: Efficiently Compiling Efficient Query Plans for Modern
Hardware VLDB 2011: https://www.vldb.org/pvldb/vol4/p539-
neumann.pdf

62

https://ir.cwi.nl/pub/11098/11098B.pdf
https://www.vldb.org/pvldb/vol4/p539-neumann.pdf
https://www.vldb.org/pvldb/vol4/p539-neumann.pdf

Backup Slides

63

Compilation cost

64

274

403

619

13 37 15
0

200

400

600

800

Query 1 Query 2 Query 3

HIQUE HyPer (LLVM)

r1

r1

r1

r1

Volcano iterator model

65

𝛤𝑠𝑢𝑚

𝜎

𝜋

𝑆𝑐𝑎𝑛

R

⚫ Pull-based Interface: open/next/close

⚫ Tuple-at-a-time processing

⚫ Each operator produces a tuple stream

next()

next()

next()

next()

Simple interface, pipelined execution

Volcano CPU costs

⚫ Control flow constantly changing

⚫ Many (virtual) function calls

⚫ Branch mispredictions

66“Real Work” a fraction of total execution

[Graefe]

Vectorized Query Execution

67

Pros Cons

Fewer next() calls Materializing costs

Good locality

Less branching

⚫ Column-store implementation

⚫ Iterators return blocks

𝛤𝑠𝑢𝑚

𝜎

𝜋

𝑆𝑐𝑎𝑛

R

Efficient control flow, but wasteful to bandwidth

[Zukowski]

68

Source:

PhD thesis of

K. Krikellas

Generic code is more and slower!

http://homepages.inf.ed.ac.uk/mc/Publications/krikellas_thesis.pdf
http://homepages.inf.ed.ac.uk/mc/Publications/krikellas_thesis.pdf

69

Source:

PhD thesis of

K. Krikellas

Exercise:
• Compare the two code snippets.

• Which is better? Why?

http://homepages.inf.ed.ac.uk/mc/Publications/krikellas_thesis.pdf
http://homepages.inf.ed.ac.uk/mc/Publications/krikellas_thesis.pdf

Push-based model for query compilation

❑ Data pushed up the pipeline

❑ Materializing only at pipeline
breakers

❑ No function calls in loops =>
Compiler distributes data to
registers and increases
cache reuse.

70
Execute without “spilling data to memory”

The Catch select d_tax from warehouse, district where
w_id=d_w_id and w_zip='…'

71

𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒

σ𝑤_𝑧𝑖𝑝

𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡

⋈𝑤𝑖𝑑=𝑑_𝑤_𝑖𝑑

(more)

72

𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒

σ𝑤_𝑧𝑖𝑝

𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡

⋈𝑤𝑖𝑑=𝑑_𝑤_𝑖𝑑

select d_tax from warehouse, district where
w_id=d_w_id and w_zip='…'

(Even more!)

73Low-level, error-prone coding

𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒

σ𝑤_𝑧𝑖𝑝

𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡

⋈𝑤𝑖𝑑=𝑑_𝑤_𝑖𝑑

select d_tax from warehouse, district where
w_id=d_w_id and w_zip='…'

From query plan to code

10

SELECT COUNT(*)
FROM Sailors
WHERE age < 20

Δ𝑠𝑢𝑚

𝜎𝑎𝑔𝑒<20

𝑆𝑎𝑖𝑙𝑜𝑟𝑠

Data Sources

Expression
Generators

Output
Plug-ins

Input
Plug-ins

Algebraic Operators

Query

On-demand
Engine

From query plan to code

10

SELECT COUNT(*)
FROM Sailors
WHERE age < 20

Δ𝑠𝑢𝑚

𝜎𝑎𝑔𝑒<20

𝑆𝑎𝑖𝑙𝑜𝑟𝑠

Data Sources

Expression
Generators

Output
Plug-ins

Input
Plug-ins

Algebraic Operators

Query

On-demand
Engine

while() {

}

From query plan to code

10

SELECT COUNT(*)
FROM Sailors
WHERE age < 20

Δ𝑠𝑢𝑚

𝜎𝑎𝑔𝑒<20

𝑆𝑎𝑖𝑙𝑜𝑟𝑠

Data Sources

Expression
Generators

Output
Plug-ins

Input
Plug-ins

Algebraic Operators

Query

On-demand
Engine

while(!eof(Sailors)) {
read(age)

}

From query plan to code

10

SELECT COUNT(*)
FROM Sailors
WHERE age < 20

Δ𝑠𝑢𝑚

𝜎𝑎𝑔𝑒<20

𝑆𝑎𝑖𝑙𝑜𝑟𝑠

Data Sources

Expression
Generators

Output
Plug-ins

Input
Plug-ins

Algebraic Operators

Query

On-demand
Engine

while(!eof(Sailors)) {
read(age)
if() {

}
}

From query plan to code

10

SELECT COUNT(*)
FROM Sailors
WHERE age < 20

Δ𝑠𝑢𝑚

𝜎𝑎𝑔𝑒<20

𝑆𝑎𝑖𝑙𝑜𝑟𝑠

Data Sources

Expression
Generators

Output
Plug-ins

Input
Plug-ins

Algebraic Operators

Query

On-demand
Engine

while(!eof(Sailors)) {
read(age)
if(eval(age < 20)) {

}
}

From query plan to code

10

SELECT COUNT(*)
FROM Sailors
WHERE age < 20

Δ𝑠𝑢𝑚

𝜎𝑎𝑔𝑒<20

𝑆𝑎𝑖𝑙𝑜𝑟𝑠

Data Sources

Expression
Generators

Output
Plug-ins

Input
Plug-ins

Algebraic Operators

Query

On-demand
Engine

while(!eof(Sailors)) {
read(age)
if(eval(age < 20)) {
sum += 1

}
}
return out(sum,json)

	Default Section
	Slide 1: CS460 Systems for Data Management and Data Science
	Slide 2: Today’s topic

	introduction
	Slide 3: (Simplified) DBMS Architecture
	Slide 4: Zoom in: Query Planner/Optimizer/Executor
	Slide 5: Query Plan

	processing - iterator
	Slide 6: Processing model
	Slide 7: Iterator Model (Volcano Model)
	Slide 8: Notation
	Slide 9: Example: Iterator Model
	Slide 10: Example: Iterator Model (cont)
	Slide 11: (Interpreted) Expression Evaluation
	Slide 12: Interpreted, tuple-at-a-time processing

	processing - Block oriented
	Slide 13: Processing model
	Slide 14: Block-oriented (aka materialization) model
	Slide 15: Block-oriented Model
	Slide 16: The (output) materialization problem – Naïve version
	Slide 17: The (output) materialization problem – version 2
	Slide 18: The (output) materialization problem – selection vector
	Slide 19: The (tuple) materialization problem
	Slide 20: Block-oriented model

	Processing - vectorization
	Slide 21: The beer analogy (by Marcin Zukowski): How to get 100 beers
	Slide 22: Processing model
	Slide 23: The middle ground: Vectorization model
	Slide 24: The middle ground: Vectorization model
	Slide 25: Vectorization model

	Query Compilation - intro
	Slide 26: Processing model
	Slide 27: Remark from Microsoft Hekaton
	Slide 28: Move from general to specialized code
	Slide 29: Query Compiler
	Slide 30: Two approaches for code generation

	Query compilation - Transpilation
	Slide 31: Transpilation use case: The HIQUE system
	Slide 32: Operator templates
	Slide 33: Integrating with the rest of the DBMS
	Slide 34: Indicative Performance [Krikellas, ICDE 2010]
	Slide 35: The catch [Krikellas, ICDE 2010]
	Slide 36: HIQUE take-home message

	Query compilation - Transpilation
	Slide 37: Transpilation use case: The HIQUE system
	Slide 38: Operator templates
	Slide 39: Integrating with the rest of the DBMS
	Slide 40: Indicative Performance [Krikellas, ICDE 2010]
	Slide 41: The catch [Krikellas, ICDE 2010]
	Slide 42: HIQUE take-home message

	Query compilation - Fusion - Motivation
	Slide 43: Two approaches for code generation
	Slide 44: Reminder: Operator templates
	Slide 45: Operator boundaries
	Slide 46: Generated code: more specialization

	Query compilation - Fusion - Composability vs Performance
	Slide 47: Operator abstractions – The good and the bad
	Slide 48: Operator abstractions – Through the looking glass
	Slide 49: Operator Fusion

	Query compilation - JIT
	Slide 50: Generate code for plan [HyPer]
	Slide 51: Push-based model for query compilation
	Slide 52: JIT compilation: The HyPer approach
	Slide 53: LLVM example: input and output
	Slide 54: The Catch
	Slide 55: (more)
	Slide 56: (Even more!)
	Slide 57: Query compilation

	Query compilation - Specialization for raw data
	Slide 58: Processing over RAW data
	Slide 59: Adapting to format
	Slide 60: RAW™ NoDB Platform

	Conclusion
	Slide 61: Conclusion
	Slide 62: Reading material
	Slide 63: Backup Slides

	Backup slides
	Slide 64: Compilation cost
	Slide 65: Volcano iterator model
	Slide 66: Volcano CPU costs
	Slide 67: Vectorized Query Execution
	Slide 68
	Slide 69
	Slide 70: Push-based model for query compilation
	Slide 71: The Catch
	Slide 72: (more)
	Slide 73: (Even more!)
	Slide 74: From query plan to code
	Slide 75: From query plan to code
	Slide 76: From query plan to code
	Slide 77: From query plan to code
	Slide 78: From query plan to code
	Slide 79: From query plan to code

