AIAS =PrL

AN/ N CSAE0
Systems for Data Management and Data Science

Query Execution

Prof. Anastasia Ailamaki
Data-Intensive Applications and Systems (DIAS) Lab

“It is better to have 100 functions operate on one data structure than to have 10 functions operate on 10 data structures”
— Alan Perlis

Gossip Protocols

Consistency protocols

CAP Theorem

Distributed/Decentraliz
ed systems

Today’s topic

Data science software stack

Data Processing
Graph Data Structured
Pregel, GraphLab, Data
X-Streem, Chaos Spark SQL

Batch Data Streaming Data
Map Reduce, Storm, Naiad, Flink, Spark
Dryad, Spark Streaming Google Data Flow

Machine
Learning

Transaction
Management

Query
Execution

Data Storage

Distribute NoSQL DB Distributed
d File Dynamo Messging

Systems Big Table systems
(GFS) Cassandra Kafka

Storage
Hierarchies
& Layouts

Ressource Management & Optimization

Scheduling (Mesos,

Query optimization YARN)

Memory

Disk 1

(Simplified) DBMS Architecture

Web
Forms

Transaction
Manager

Application
Front Ends SQL
\.L/l Interface
SQL Commands
Parser + Optimizer +
Plan Execution
Recovery
Manager

\ Files and Access Methods

e

Buffer Management

Storage Management

Data
SO

. g
v

Zoom in: Query Planner/Optimizer/Executor

Query Optimizer Cost (=P
. Estimates .
Abstract Logical Physical
Syntax Query Query

-+ Plan Executor
Parser |—> Planner |—> Optimizer

How the DBMS executes a query (plan) -

Query Plan

Operators are arranged in a tree.
Data flows from leaves to root.
Output of root = Query result.

SELECT A.1d, B.value
FROM A, B
WHERE A.1d = B.1id

2 \
. - P value>1@@
AND B.value > 100

Composable algebra => composable execution

Processing model

The processing model of a DBMS defines how the system
executes a query plan.

— Different trade-offs for different workloads

e Extreme I: Tuple-at-a-time via the iterator model
e Extreme II: Block-oriented model (typically column-at-a-time)

i

Iterator Model (Volcano Model)

Each query operator implements a next function.

class Operator:
Optional<Tuple> next ()

* On eachinvocation, the operator returns either a single tuple
or a marker that there are no more tuples

* next calls next on the operator’s children to retrieve and

process their tuples

class Project:
Operator input, Expression proj
Optional<Tuple> next () :
t = 1nput.next()
1T (t empty) return empty
return proj (t)

class Filter:
Operator input, Expression pred

Optional<Tuple> next () :
while (true):
t = input.next ()
1T (t empty or pred(t)) return t

Common operator interface => composability

AYTANS

L
i

Notation

class Operator:
Optional<Tuple> next ()

class Operator:
generator<Tuple> Next ()

class Filter:
Operator 1input, Expression pred

Optional<Tuple> next () :
while (true):
t = input.next ()
1T (t empty or pred(t)) return t

class Filter:
Operator input, Expression pred

generator<Tuple> next () :
for t in input.Next/():
1T pred(t) emit t

class Project:
Operator input, Expression proj
Optional<Tuple> next () :
t = 1nput.next()
1T (t empty) return empty
return proj (t)

class Project:
Operator input, Expression proj

generator<Tuple> Next () :
for £t in input.Next /() :
emit proj(t)

Sas =P

Example: Iterator Model
SELECT A.id, B.value
for t in child.Next(): FROM A’ B

emit(projection(t)) "'.,... WHERE A.ld - B.ld
AND B.value > 100

for t, in left.Next():
buildHashTable(t,)

for t, in right.Next(): "-....
if probe(t,): emit(t,bdt,) ok

for t in child.Next():
if evalPred(t): emit(t)

for Ftig)ﬁ.i fﬂ;m?t%g)B: 4Illllllllll IIIAIIIIIIIIIIIIIIIIIB
eml

A

u
.IIIIlII

.
= 9

LS =P
Example: Iterator Model (cont)

SELECT A.id, B.value
FROM A, B

tfor t in child.Next():

emit(projection(t)) WHERE A.i1d = B.1id
AND B.value > 100

2 for t, in left.Next():
buildHashTable(t,)
for t, in right . Next() : =

if probe(t,): emit(t,pdqt,)

sfor t in child.Next(): 4
if evalPred(t): emit(t)

3fartinh: for t in B: 5
emit(t) emit(t)

10

(Interpreted) Expression Evaluation

Filter: SELECT A.id, B.value

Operator input FROM A B
Expression pred = (B.c=B.d)AND (B.value > 100) WHERE A’.id _Bid

<Tuple> next () : .. AND B.c = B.d

' AND B.value > 100
Nodes in the tree represent yalue

different expression types:
e Comparisons (=, <, >, =)

e Conjunction (AND), Disjunction (OR)
e Arithmetic Operators (+,-,*,/,%)

e Constant Values

e Tuple Attribute References

Attribute(val) || Constant(100)
11

Attribute(B.c) Attribute(B.d)

L
i

Interpreted, tuple-at-a-time processing

for t in child.Next():
emit(projection(t))

for t, in left.Next():
buildHashTable(t,)

for t, in right.Next() : =
if probe(t,): emit(t,pdt,)

The DBMS traverses the tree.
For each node that it visits, it has to figure out
what the operator needs to do. Same for expressions.

This happens for every... single... tuple...

Many function calls
e Save/restore contents of CPU registers
e Force new instruction stream in the

sefor t in child.Next():

if evalPred(t): emit(t) pipeline = bad for instruction cache

Generic code

for t in A: for t in B:
emit(t) emit(t)

e Has to cover every table, datatype, query

12

Processing model

The processing model of a DBMS defines how the system
executes a query plan.

— Different trade-offs for different workloads

e Extreme I: Tuple-at-a-time via the iterator model

e Extreme |l: Block-oriented model (typically column-at-a-time)

i

13

Block-oriented (aka materialization) model

Each operator processes its input all at once and emits its output

all at once

e The operator “materializes” its output as a single result.

e Often bottom-up plan processing.

class Operator:
Tuples Output ()

class Project:
Operator input, Expression proj
Tuples Output () :
out = {}
for t in input.Output() :
out.append (proj (t))
return out

class Filter:
Operator input, Expression pred

Tuples Output() :
out = {}
for £t 1n input.Output():
1T pred(t) out.append(t)
return out

Block-oriented Model

out = { }
for t in child.Output():
out.add(projection(t))

out

‘1. for
buildHashTable(t,)
for

if probe(t,): out.add(t,bdt,)

={ 1}
t, in left.Output():

t, in right.Output(): €

|

out = { }
for t in child.Output():
if evalPred(t): out.add(t)

out = { } out = { } 2
for t in A: for t in B:
out.add(t) out.add(t)

SELECT A.id, B.value
FROM A, B

WHERE A.id = B.1id
AND B.value > 100

15

The (output) materialization problem — Naive version

thl tid Name
tid Name ||Age Dept nname 1 John
1 John 22 HR
2 Jack 19 HR tid
3 Jane 37 IT D<) 1
SELECT Name . / \ .
FROM tbl tid | | Age tid || Dept
WHERE Age > 20 1 22 O-age>20 Udept:HR 1 HR

AND Dept = “HR” [3_|[3/ \ /1 2 ||HR
tbl

16

\IAS P

The (output) materialization problem — version 2

thl tid

Name

tid Name || Age Dept T[name 1 John
1 John 22 HR T
2 Jack 19 HR tid
3 Jane ||37 IT Udept=HR 1

SELECT Name tid as extra filter to reduce output!

FROM tbl Can we reduce it further?

WHERE Age > 20 tid

AND Dept = “HR” Ogge>20 |1

3
!

17

N * 5
| Jo

—P-

The (output) materialization problem — selection vector

SELECT Name
FROM tbl

WHERE Age
AND Dept = “HR”

> 20

tid Name ||Age Dept
1 John 22 HR
2 Jack 19 HR
3 Jane 37 IT

7Tru1nqe

T

Udept=HR

Gdge>20

T

tbl

Name

John

bitmap

* Only materialize bitmap
* Perform calculations
only for relevant tuples

18

The (tuple) materialization problem

e \When joining tables, columns can get shuffled

=> Cannot use virtual ids

=> Stitching causes random accesses

tbll.age
[>4 tid | Name| |tid |Age
tblz.ﬂefgl.name John 29
tbl2 tbli 3 |Jane \ 2 19
The order of tbll.name entries Jack |43 37

can change after the join!!!

Solution 1: Stitch columns before join

Solution 2: Sort list of tids before projection
Solution 3: Use order-preserving join algorithm (eg jive-join) — but not always applicable *°

Block-oriented model

v"No next() calls -> no per-tuple overhead

v/ Typically combined with columnar storage ’/:{D
4

= Cache-friendly mone
= SIMD-friendly
= “Run same operation over consecutive data”

v’ Avoid interpretation when evaluating expressions (in most cases)
— Typically use macros to produce 1000s of micro-operators (!!!)
e selection_gt_int32(int *in, int pred, int *out)
" selection_It_int32(int *in, int pred, int *out)

- Output materialization is costly (in terms of memory bandwidth)

The beer analogy (by Marcin Zukowski):
How to get 100 beers

Tuple-at-a-time execution:

e Go to the store

e Pick a beer bottle

e Pay at register

e Walk Home

e Put beer in fridge

Repeat till you have 100 beers
Many unnecessary steps

Column-at-a-time execution
e Go to the store

e Take 100 beers

e Pay at register

e Walk Home

100 beers not easy to carry

21

Processing model

The processing model of a DBMS defines how the system
executes a query plan.

— Different trade-offs for different workloads

e Extreme I: Tuple-at-a-time via the iterator model
e Middle Ground: Vectorization model

e Extreme Il: Block-oriented model (typically column-at-a-time)

22

The middle ground: Vectorization model

e Like iterator model, each operator implements a next function

e Each operator emit a vector of tuples instead of a single tuple
— Vector-at-a-time, aka “Carry a crate of beers at a time”!
— The operator’s internal loop processes multiple tuples at a time.
— Vector size varies based on hardware or query properties
e General idea: Vector must fit in CPU cache

23

The middle ground: Vectorization model

e Like iterator model, each operator implements a next function
e Each operator emits a vector of tuples instead of a single tuple

class Operator:
Optional<Vector<Tuple>> next ()

class Project:
Operator input, Expression proj
Optional<Vector<Tuple>> next () :

vec = 1nput.next ()
1t (vec empty) return empty
out = {}

for t 1n vec:
out.add (proj(t))
return out

class Filter:
Operator input, Expression pred

Optional<Vector<Tuple>> next () :

while (true):
vec = 1nput.next ()
1t (vec empty) return vec
out = {}
for t in vec:
1T pred(t) :
return out

out.add (t)

24

Vectorization model

Ideal for OLAP queries
e Greatly reduces the number of invocations per operator

e Allows for operators to use vectorized (SIMD) instructions to
process batches of tuples

e Basic model commercialized by % vectorwise

25

Processing model

The processing model of a DBMS defines how the system
executes a query plan.

— Different trade-offs for different workloads

e Extreme I: Tuple-at-a-time via the iterator model
e Query compilation
e \Vectorization model

e Extreme Il: Block-oriented model (typically column-at-a-time)

26

Remark from Microsoft Hekaton

After switching to an in-memory DBMS, the only way to increase
throughput is to reduce the number of instructions executed.

— To go 10x faster, the DBMS must execute 90% fewer instructions
— To go 100x faster, the DBMS must execute 99% fewer instructions

The only way to achieve such a reduction in the number
of instructions is through code specialization.

— Generate code that is specific to a particular task in the DBMS.
— (Currently, most code is written to be understandable)

27

Move from general to specialized code

e CPU-intensive code parts can be natively compiled if they have

a similar execution pattern on different inputs
— Access Methods

— Operator Execution

— Predicate Evaluation

e Goal: Avoid runtime decisions! Decide once, when you see the
query plan!
* Attribute types

=> (Inline) pointer casting instead of
data access (virtual) function calls

* Query predicate types
=> data comparisons 28

Query Compiler

Query Optimizer

Logical

Query
Plan

AST

Parser H

Plan
Rewriter

—

Plan
Optimizer

Physical

Query
Plan

—

Code Generator

Native
Code

29

Two approaches for code generation

Transpilation
e DBMS converts a query plan into imperative source code

e Compile the produced code to generate native code with a
conventional compiler

JIT compilation

e Generate an intermediate representation (IR) of the query that
can be quickly compiled into native code.

30

Transpilation use case: The HIQUE system

e HIQUE: Holistic Integrated QUery Engine

e For a given query plan, create a C program that implements
that query’s execution plan.
— Bake in all the predicates and type conversions.

e Advantages:

— Fewer function calls during query evaluation
— Generated code uses cache-resident data more efficiently
— Compiler optimization techniques come free

e Off-the-shelf compiler converts code into a shared object, links
it to the DBMS process, and then invokes the exec function.

31

Operator templates

SELECT * FROM A WHERE A.val = ?

Interpreted plan

for tin range(table.num_tuplesi:
tuple = get tuple(table, t)
If eval(predicate, tuple, paramg):
emit(tuple)

1. Getschema in catalog for table
2. Calculate offset based on tuple
size
3__Return pointer to tuple
1. Traverse predicate tree — pull values
up
2. For tuple values, calculate the offset

of the target attribute
3. Resolve datatype (switch / virtual

call)

+ 1

Known at query
Templated plan compile time

tuple_size
predicate offset = ###

parameter value = ###

fortin
range(table.num_tuples): |

tuple = tab
tuple_siz

val = (tuple+predicate_offset)

I (val == parameter_value + 1I):
emit(tuple)

L
i

32

AAN= cPr
Integrating with the rest of the DBMS

e The generated query code can invoke any other function in the
DBMS - no need to generate code for the whole DB!

e Re-use the same components as interpreted queries.
— Concurrency control
— Logging and checkpoints
— Indexes

33

Indicative Performance [krikellas, ICDE 2010]

Time ()

Time ()

70
60
50

PostgreSQL
System X
MonetDB

HIQUE

59.353

37.185

i 1.376

S

L 1

DT
[SPIRSPEP P
INFSASASAL AR TN
RICIIORNN
RSASEORS

0.356

(a) Query #1 |

5091 PostgreSQL

System X
MonetDB
HIQUE

"5 R AR AR RTE R
AR
RS

AR NN
RN
RS
SRR
RO R TR0
TN

ox X X x ok ox X »x o
ST
<
CEEI ()
LI .
IR0 16]
A S OO
R MY AHIOIICIICI
R AR A IR R AT S AN NN
R I A R I IO IS
S SRR
. ~ 1S Co 24

L]

FoeRCRoCR
FEEREET
[SPALOFOPALRTIIL)

1 G ORGES
RISHOIOHNNNS
DOCHIORRAN

795 £0.971

Time (s)

. 4.549

PostgreSQL 1
System X i

2477

WRNNRNINN

24

AP A e A e N D

A(x\
2
g
5
5
O
%3
<,
S
]

B
p—
—

S

v
%
0

.
PN NN SIS Y IR

b

Query #3

Up to 2 orders of magnitude reported
improvement when compared to

interpreted DBs
(e.g., PostgreSQL)

34

The catch [Krikellas, ICDE 2010]

TPC-H SQL processing (ms) Compilation (ms) C file sizes (bytes)
Query Parsing Optimisation‘ Generation‘ with -00, with -02| Source Shared library
1 21 1 1 121 274 17733 16858
3 11 1 2 160 403 33795 24941
5 11 1 2 201 578 43424 33088
10 15 1 4 213 619 50718 33510

Compilation takes time!

In practice, ~1 second is not a big issue for OLAP queries
An OLAP gquery may take tens to hundreds of seconds
How about OLTP queries?
Hint: In OLTP, we know the typical queries - pre-compile and cache

35

HIQUE take-home message

e Reduce function calls

e Specialized code = avoid type-checking, smaller code,
promote cache reuse

BUT
e Compilation takes time
e Sticks to the operator “legacy” abstraction

L
i

36

Transpilation use case: The HIQUE system

e HIQUE: Holistic Integrated QUery Engine

e For a given query plan, create a C program that implements
that query’s execution plan.
— Bake in all the predicates and type conversions.

e Advantages:

— Fewer function calls during query evaluation
— Generated code uses cache-resident data more efficiently
— Compiler optimization techniques come free

e Off-the-shelf compiler converts code into a shared object, links
it to the DBMS process, and then invokes the exec function.

37

Operator templates

SELECT * FROM A WHERE A.val = ?

Interpreted plan

for tin range(table.num_tuplesi:
tuple = get tuple(table, t)
If eval(predicate, tuple, paramg):
emit(tuple)

1. Getschema in catalog for table
2. Calculate offset based on tuple
size
3__Return pointer to tuple
1. Traverse predicate tree — pull values
up
2. For tuple values, calculate the offset

of the target attribute
3. Resolve datatype (switch / virtual

call)

+ 1

Known at query
Templated plan compile time

tuple_size
predicate offset = ###

parameter value = ###

fortin
range(table.num_tuples): |

tuple = tab
tuple_siz

val = (tuple+predicate_offset)

I (val == parameter_value + 1I):
emit(tuple)

L
i

38

AAN= cPr
Integrating with the rest of the DBMS

e The generated query code can invoke any other function in the
DBMS - no need to generate code for the whole DB!

e Re-use the same components as interpreted queries.
— Concurrency control
— Logging and checkpoints
— Indexes

39

Indicative Performance [krikellas, ICDE 2010]

Time ()

Time ()

70
60
50

PostgreSQL
System X
MonetDB

HIQUE

59.353

37.185

i 1.376

S

L 1

DT
[SPIRSPEP P
INFSASASAL AR TN
RICIIORNN
RSASEORS

0.356

(a) Query #1 |

5091 PostgreSQL

System X
MonetDB
HIQUE

"5 R AR AR RTE R
AR
RS

AR NN
RN
RS
SRR
RO R TR0
TN

ox X X x ok ox X »x o
ST
<
CEEI ()
LI .
IR0 16]
A S OO
R MY AHIOIICIICI
R AR A IR R AT S AN NN
R I A R I IO IS
S SRR
. ~ 1S Co 24

L]

FoeRCRoCR
FEEREET
[SPALOFOPALRTIIL)

1 G ORGES
RISHOIOHNNNS
DOCHIORRAN

795 £0.971

Time (s)

. 4.549

PostgreSQL 1
System X i

2477

WRNNRNINN

24

AP A e A e N D

A(x\
2
g
5
5
O
%3
<,
S
]

B
p—
—

S

v
%
0

.
PN NN SIS Y IR

b

Query #3

Up to 2 orders of magnitude reported
improvement when compared to

interpreted DBs
(e.g., PostgreSQL)

40

The catch [Krikellas, ICDE 2010]

TPC-H SQL processing (ms) Compilation (ms) C file sizes (bytes)
Query Parsing Optimisation‘ Generation‘ with -00, with -02| Source Shared library
1 21 1 1 121 274 17733 16858
3 11 1 2 160 403 33795 24941
5 11 1 2 201 578 43424 33088
10 15 1 4 213 619 50718 33510

Compilation takes time!

In practice, ~1 second is not a big issue for OLAP queries
An OLAP gquery may take tens to hundreds of seconds
How about OLTP queries?
Hint: In OLTP, we know the typical queries - pre-compile and cache

41

HIQUE take-home message

e Reduce function calls

e Specialized code = avoid type-checking, smaller code,
promote cache reuse

BUT
e Compilation takes time
e Sticks to the operator “legacy” abstraction

L
i

42

L
i

N * 5
I‘S

Two approaches for code generation

JIT compilation

e Generate an intermediate representation (IR) of the query that
can be quickly compiled into native code.

43

Reminder: Operator templates

SELECT * FROM A WHERE A.val = ? + 1

Interpreted plan Templated plan

for tin range(table.num_tuplesi:
tuple = get _tuple(table, t)
If eval(predicate, tuple, paramsg):
emit(tuple)

fortin
range(table.num_tuples):
tuple = table.data +t
tuple_size
val = *(tuple+predicate_offset)
I (val == parameter_value + 1I):
emit(tuple)

44

SELECT A.a + B.b

FROM A, B

WHERE A.val = ? + 1
AND B.c = A.d

Operator boundaries

Main:
execute(Op-I
execute(Op-

execute(Op-n)

for tin
range(table.num_tuples):

tuple = table.data + t =
tuple_size

val = *(tuple+predicate_offse

- S 4 1 A

v

1 4\

for tin
range(emitted.num_tuples):
t2 = emitted.data + t *
tuple2_size
k = hash(*(t2+key _offset))

e [I~+71,\\.

45

Generated code: more specialization

SELECT A.a + B.b

FROM A, B

WHERE A.val = ? + 1
AND B.c = A.d

for t in range(table.num_tuples):
tuple = table.data + t * tuple_size
val = *(tuple+predicate_offset)
if (val == parameter_value + 1):

k = hash(*(tuple+key_offset)

while (probe_ht(k)):
emit(t2, probe_match)

fortin
range(table.num_tuples):
tuple = table.data +t

tuple_size

7L | 2 I s o o

AN

for tin
range(emitted.num_tuples):
t2 = emitted.data + t *
tuple2_size
k = hash(*(t2+key _offset))

e [I~+71,\\.

46

* Composability — Express complex logic using small modules

* Modularity — Develop each component independently

e Artificial boundaries — Cost of modularity (?)

a7

| Jo

Functionality & DBMS
Dev

Composability
Express complex logic
using small modules

Modularity
Develop each component
independently

Query
Execution

Artificial boundaries

Operator abstractions — Through the looking glass

48

Operator Fusion

Functionality & DBMS Query
Dev Execution

Composability

Express complex logic Blurred operator boundaries
using small modules

HyPer

Modularity
Develop each component
independently

49

B~ =]
Generate code for plan [HyPer]

" for each tuple t in R;
iftx=7
materialize t in hash table of
- Ma=p
for each tupletin R,
ifty=3
aggregate and materializeinto I',,

' for each tupletinT,
materialize t in hash table of P,

for each tuple t3 in R;
for each match t, in D,_.[t5.C]
for each match t; in <l _p[t3.b]
outputt; ot, ot

Operator boundaries blurred — Imperative execution .,

Push-based model for query compilation

o Data pushed up the pipeline

o Materializing only at pipeline
breakers

o No function calls in loops =>
Compiler distributes data to
registers and increases
cache reuse.

" for each tuple t in R;
iftx=7
materialize t in hash table of

- Ma=p _
for each tupletin R,

ifty=3

aggregate tin hash table of T, ° X

for each tupletinT, 1 Bz
materialize t in hash table of D<,—. _

for each tuple t3 in R; -
for each match t, in D,_.[t5.C]
for each match t; in <l _p[t3.b]
outputt; oty o t3

51

JIT compilation: The HyPer approach

e HyPer goal: “Keep a tuple in CPU registers as long as possible”

— Push data through execution plan
— Blur operator boundaries

e Generate code using LLVM

e LLVM: Collection of modular and reusable compiler and
toolchain technologies.

e Core component is a low-level programming language (IR) that
is similar to assembly.

e Not all of the DBMS components need to be written in LLVM IR.
— LLVM code can make calls to C++ code.

52

LLVM example: input and output

int mul_add(int x, inty, int z) {
returnx *y + z;

}

define i32 @mul_add(i32 %x, i32 %y, i32 %z) {
entry:
%tmp = mul i32 %x, %y
%tmp2 = add i32 %tmp, %z
reti32 %tmp2
}

e Produced code very close to assembly
e Compilation very fast (tens of milliseconds!) -

The CatCh select d_tax from warehouse, district
w_id=d_w_id and w_zip=".."

derine voild @planStart(Y l4a= YsexecutionsState) {

body:
%0 — metelementptr inbounds 2% 14+ %%executionState, i64 O, i32 O, i32 1,
iea O
store i64 O, i64= %0, align S

o1 — metelementptr inbounds 2514= 70)\ocilt1()nStatO i64 O, i32
call void @ _ZNShyper9HashTableSresetEv (/ "Thyper::HashTable™ = / 1)

22 bitcast 514 2%SexecutionState to 257 hy per: Database - o
%3 load " hyper::Database” =* 252, align 8
“oa metelementptr inbounds 207 hyper::Database™ = 263, i64 O, i32 1

o5 load iS=xx 254, align S

chouse — gmetelementptr inbounds I8+« 2905, 164 5712
metelementptr inbounds i8S+ 2905, i64 5784
bitcast i8S+ 206 to i3+ =

load i32+= 257, align 8

metelementptr inbounds iS-= 2905, i64 58332
bitcast i8x= 209 to 03

load Z63=+== 2510, align S

bitcast i8x 2warehouse to 164

— load i64=x 2512, align 8

icmp eq i64 %%size, O

1 2613, label Z%GscanDone, label Y%OscanBody

AN NAN

RERREOON
Ve
]
I

.
-
I

scanBody:
%tid = phi i64 [0, %body], [%34, %cont2]
%14 = getelementptr 132+ %8, 164 %tid
%w_id = load 132* %14, align 4
%15 = getelementptr inbounds %3* %11, 164 %tid, 132 0
%16 = load i8+ %15, align 1
%17 = icmp eq i8 %16, 9
br i1 %17, label %then, label %cont2

[then:

%wzip = getelementptr inbounds %3+ %11, 164 %tid, 132 1, 164 0
%27 = call 132 @memcmp(i8+ %w_zip, i8% @"string 137411111", 164 9)
%28 = icmp eq 132 %27, 0

br i1 %28, label %then1, label %cont2

thenl:
%29 = zext 132 %w_id to 164

Ow_zip

Warehouse

where

54

(rT\()rEE) select d _tax from warehouse, district where

w_id=d w _id and w_zip=".."

oSS D ocrocGaA.GACIiGA O, iGaA TEDO

scanBody5:
%tid9 = phi 164 [0, Y%scanDone], [%58, %loopDone]
%36 = getelementptr 132+ %21, 164 %tid9
Y%d_w_id = load 132+ %36, align 4
%37 = getelementptr 164+« %24, 164 %tid9
%d_tax = load 164+ %37, align 8
%38 = zext 132 %d_w_id to 164
%39 = call 164 @llvm.x86.sse42.crc64.64(i64 0, 164 %38)

%40 = shl i64 %39, 32

%41 = getelementptr inbounds %14* %executionState, 164 0, 132 1, 132 0
%42 = load %" hyper::HashTable::Entry” #++ %41, align 8

%43 = getelementptr inbounds %14#* %executionState, 164 0, 132 1, 132 2
%44 = load 164+ %43, align 8

%45 = lshr 164 %40, %44

%46 = getelementptr %" hyper::HashTable::Entry” ++ %42, i64 %45

%47 = load %" hyper::HashTable::Entry” =+ %46, align 8

%48 = icmp eq %" hyper::HashTable::Entry” * %47, null
br il %48, label %loopDone, label %loop

Ow _zip

Warehouse

55

NS =PF=]
(Even mOrE!) select d_tax from warehouse, district where
w_id=d_w_id and w_zip=".."

loopStep:
%49 = getelementptr inbounds %" hyper::HashTable::Entry” * %iter, i64 0,
i32 1
%50 = load %" hyper::HashTable::Entry"” =% %49, align 8
%51 = icmp eq %" hyper::HashTable::Entry” * %50, null M i _d 'd
br il %51, label %loopDone, label %loop Wld_ _W_l
loop:
%iter — phi %" hyper::HashTable::Entry” = [%47, %scanBody5 |, [%50, %
loopStep]
%52 = getelementptr inbounds %" hyper::HashTable::Entry” * %iter, 164 1
%53 = bitcast %" hyper::HashTable::Entry” =« %52 to i32=
%54 = load 132+ %53, align 4
%55 = icmp eq 132 %54, %d_w_id

br i1 %55, label %thenl0, label %loopStep

thenl0:
call void @_ZN6dbcorel6RuntimeFunctions12printNumericEljj(i64 %d_tax,
i32 4, i32 4)
call void @_ZNé6dbcorel6RuntimeFunctions7printN1Ev()
br label %loopStep

loopDone:
%58 = add i64 %tid9, 1
%59 = icmp eq 164 %58, Y%sizel
br il %59, label %scanDone6, label %scanBody5s

scanDone6:
ret void

Low-level, error-prone coding .

Query compilation

e Pipelined query processing without interpretation cost
e Very painful to implement

e BUT: Benefits have led major DBMS (and Spark!) to implement it

57

Processing over RAW data

Traditional DBMS:
Data adapts to engine

Proteus

Plug-in per data source
Generic-purpose scan operator

Specialize access paths to formats

Adapting to format

e Unroll Columns <VCO].:

skipField();
[> skipRest();

if col needed:

e Data Types <

/lread field from file

raw = readNextFieldFromFile(file)

switch (schemaDataType[column])
case IntType: datum =

convertTolnteger(raw)

oncn ClantTvino: At —

VAU L T TUQUL 1] yP\:- UUCALUIT T

convertToFloat(raw)

* Free navigation in files<_

- fieldLength:10 moveTo(110);
- tupleLength:100 [> readInt();
- Need fields2 & 5 moveTo(140);

of 2nd row readFloat();

59

RAW™ NoDB Platform

Business Data Cleaning Data ML & Al Business

Intelligence & Export Discovery Data Preparation Applications
I | 1 I I

Single Query Engine

Unified Virtual Data Lake

Operational Enterprise Data Data External
Systems Systems Warehouses Lakes Sources

(Sensordata, Scada...) (CRM, ERP, SCM...) (Teradata, Oracle...) (Hadoop, S3, Azure...) (Social Media, Weather...)

©2019 RAW Labs SA 60

Conclusion

The processing model of a DBMS defines how the system

executes a query plan.

—

e Tuple-at-a-time via the iterator model
e Query compilation
e Vectorization model

| Hybrids
do exist!!!

e Block-oriented model (typically column-at-a-time)

—

61

Reading material

e COW Book chapters 12

e M. Zukowski et al: MonetDB/X100 - A DBMS In The CPU Cache. IEEE 2005:
https://ir.cwi.nl/pub/11098/11098B.pdf

e T. Neumann: Efficiently Compiling Efficient Query Plans for Modern

Hardware VLDB 2011: https://www.vldb.org/pvidb/vol4/p539-
neumann.pdf

62

https://ir.cwi.nl/pub/11098/11098B.pdf
https://www.vldb.org/pvldb/vol4/p539-neumann.pdf
https://www.vldb.org/pvldb/vol4/p539-neumann.pdf

Backup Slides

B - —| na =l O
Compilation cost

800
B HIQUE ® HyPer (LLVM)

600

400

200
13 37 15

0

Query 1 Query 2 Query 3

64

rlf
rlt

rlf

o1

next()

next()

Volcano iterator model

 Pull-based Interface: open/next/close

o Tuple-at-a-time processing

o Each operator produces a tuple stream

Simple interface, pipelined execution

65

Volcano CPU costs ©=

« Control flow constantly changing
o Many (virtual) function calls

o Branch mispredictions

“Real Work” a fraction of total execution 56

Vectorized Query Executiof

o Column-store implementation

Nt o Iterators return blocks

Pros

Cons

Fewer next() calls

Materializing costs

Good locality

Less branching

it

R

Efficient control flow, but wasteful to bandwidth

67

AYTANS

© 00 ~N O O W N F

© 0O N o 0o WONN B

[
o

Generic code is more and slower!

/7 TUUp uver pages
for (int p = start_page; p <= end_page; p++) {
page_struct xpage = read_page(p, table);
// loop over tuples
for (int t = 1; t <= page—>num_tuples; t++) {
tuple_struct *tuple = read_tuple(t, page);
if (!(matches(tuple, predicate_value, predicate_offset)) continue;

add_to_result (tuple);

b

Listing 3.2: Type-specific table scan-select

// loop over pages

for (int p = start_page; p <= end_page; p++) {
page_struct *xpage = read_page(p, table);

// loop over tuples

for (int t = 0; t < page—>num_tuples; t-|--|-) { Source.
void xtuple = page—>data + t * tuple_size; PhD thESIS Of

int xvalue = tuple + predicate_offset;

if (xvalue != predicate_value) continue; K_ Krlke”as

memcpy (..);

13

68

http://homepages.inf.ed.ac.uk/mc/Publications/krikellas_thesis.pdf
http://homepages.inf.ed.ac.uk/mc/Publications/krikellas_thesis.pdf

© 0 N O g A W N -

e e
A W N B O

© 0 N O g A W N -

e o =
S O W NN R O

Isting 5.5: Nalve nested loops join

// loop over pages
for (int p_R = start_page_R; p_R <= end_page_R; p_R++) {
page_struct *xpage_R = read_page(p_R, R);

[]
for (int p_S = start_page_S; p_S <= end_page_S; p_S++) { I Xe rCISe_

page_struct *page.§ = read-page(p-5, 5); « Compare the two code snippets.
* Which is better? Why?

// loop over tuples

for (int t_R = 1; t_R <= page_R—>num_tuples; t_R++) {
tuple_struct xtuple_R = read_tuple(t_R, page_R) ;

for (int t_S = 1; t_S <= page_S—>num_tuples; t_S++) {
tuple_struct *xtuple_S = read_tuple(t_S, page_S);
if (!(matches(tuple_R, offset_R, tuple_S, offset_S))) continue;
add_to_result(tuple_R, tuple_S);

1388

Listing 3.4: Holistic nested loops join

// loop over pages

for (int p_R = start_page_R; p_R <= end_page_R; p_R++) {
page_struct xpage_R = read_page(p_R, R);

for (int p_S = start_page_S; p_S <= end_page_S; p_S++) {
page_struct *page_S = read_page(p_S, S);

// loop over tuples Source-
for (int t_R = 0; t_R < page_R—>num_tuples; t_R++) { .
void *tuple_R = page_R—>data + t_R * tuple_size_R; PhD theSIS Of

for (int t_8 = 0; t_S < page_S—>num_tuples; t_S++) {

void xtuple_S = page_S—>data + t_S * tuple_size_S; K K .k II
int xattr_R = tuple_R 4 offset_R; " rl e aS

int xattr_S = tuple_S + offset_S;

if (xattr_R != xattr_S) continue;
add_to_result(tuple_R, tuple_S); /% inlined x/ 69

1333

http://homepages.inf.ed.ac.uk/mc/Publications/krikellas_thesis.pdf
http://homepages.inf.ed.ac.uk/mc/Publications/krikellas_thesis.pdf

A\ Push-based model for query compilation

.“""’Mgéb.,_ o Data pushed up the pipeline

*
*
-

a Materializing only at pipeline
breakers

a No function calls in loops =>
Compiler distributes data to
registers and increases
cache reuse.

Execute without “spilling data to memory” ;

The Catch

derine voild @planStart(Y l4a= YsexecutionsState) {

body:
%0 — metelementptr inbounds 2% 14+ %%executionState, i64 O, i32 O, i32 1,
iea O
store i64 O, i64= %0, align S

o1 — metelementptr inbounds 2514= 70)\ocilt1()nStatO i64 O, i32
call void @ _ZNShyper9HashTableSresetEv (/ "Thyper::HashTable™ = / 1)

22 bitcast 514 2%SexecutionState to 257 hy per: Database - o
%3 load " hyper::Database” =* 252, align 8
“oa metelementptr inbounds 207 hyper::Database™ = 263, i64 O, i32 1

o5 load iS=xx 254, align S

chouse — gmetelementptr inbounds I8+« 2905, 164 5712
metelementptr inbounds i8S+ 2905, i64 5784
bitcast i8S+ 206 to i3+ =

load i32+= 257, align 8

metelementptr inbounds iS-= 2905, i64 58332
bitcast i8x= 209 to 03

load Z63=+== 2510, align S

bitcast i8x 2warehouse to 164

— load i64=x 2512, align 8

icmp eq i64 %%size, O

1 2613, label Z%GscanDone, label Y%OscanBody

AN NAN

RERREOON
Ve
]
I

.
-
I

select d_tax from warehouse, district

w_id=d_w_id and w_zip="

scanBody:
%tid = phi i64 [0, %body], [%34, %cont2]
%14 = getelementptr 132+ %8, 164 %tid
%w_id = load 132* %14, align 4
%15 = getelementptr inbounds %3* %11, 164 %tid, 132 0
%16 = load i8+ %15, align 1
%17 = icmp eq i8 %16, 9
br i1 %17, label %then, label %cont2

[then:

%wzip = getelementptr inbounds %3+ %11, 164 %tid, 132 1, 164 0
%27 = call 132 @memcmp(i8+ %w_zip, i8% @"string 137411111", 164 9)
%28 = icmp eq 132 %27, 0

br i1 %28, label %then1, label %cont2

thenl:
%29 = zext 132 %w_id to 164

X

wig=d_w_id

Ow_zip

'1\

Warehouse

where

71

oSS D ocrocGaA.GACIiGA O, iGaA TEDO

scanBody5:
%tid9 = phi 164 [0, %scanDone], [%58, %loopDone]
%36 = getelementptr 132+ %21, 164 %tid9
Y%d_w_id = load 132+ %36, align 4
%37 = getelementptr 164 %24, 164 %tid9
%d_tax = load 164+ %37, align 8

%38 = zext 132 %d_w_id to 164

%39 = call 164 @llvm.x86.sse42.crc64.64(i64 0, 164 %38)

%40 = shl i64 %39, 32

%41 = getelementptr inbounds %14* %executionState, 164 0, 132 1, 132 0
%42 = load %" hyper::HashTable::Entry” #++ %41, align 8

%43 = getelementptr inbounds %14#* %executionState, 164 0, 132 1, 132 2
%44 = load 164+ %43, align 8

%45 = Ishr 164 %40, %44

%46 = getelementptr %" hyper::HashTable::Entry” ++ %42, i64 %45

%47 = load %" hyper::HashTable::Entry” =+ %46, align 8

%48 = icmp eq %" hyper::HashTable::Entry” * %47, null
br il %48, label %loopDone, label %loop

X

wig=d_w_id

Ow_zip

Warehouse

=

select d _tax from warehouse, district where
W _id=d w id and w_zip=".."

e

72

LA =PrFL
(E\[en more!) select d _tax from warehouse, district where
w_id=d_w_id and w_zip=".."

loopStep:
%49 = getelementptr inbounds %" hyper::HashTable::Entry” * %iter, i64 0,
i32 1
%50 = load % "hyper::HashTable::Entry” =+ %49, align & N
%51 = icmp eq %" hyper::HashTable::Entry” * %50, null
br il %51, label %loopDone, label %loop

wig=d_w_id

loop:
%iter — phi %" hyper::HashTable::Entry” = [%47, %scanBody5 |, [%50, %
loopStep]
%52 = getelementptr inbounds %”hyper::HashTable::Entry” + %iter, 164 1
%53 = bitcast %" hyper::HashTable::Entry” +« %52 to i32x
%54 = load 132+ %53, align 4
%55 = icmp eq 132 %54, %d_w_id

br i1 %55, label %thenl0, label %loopStep

thenl0:
call void @_ZN6dbcorel6RuntimeFunctions12printNumericEljj(i64 %d_tax,
i32 4, i32 4)
call void @_ZNé6dbcorel6RuntimeFunctions7printN1Ev()
br label %loopStep

loopDone:
%58 = add 164 %tid9, 1
%59 = icmp eq i64 %58, %sizel
br i1 %59, label %scanDone6, label %scanBody5b

scanDone6:
ret void

Low-level, error-prone coding 7

From query plan to code

Quer SELECT COUNT(*)
y FROM Sailors
l [On-demand WHERE age < 20
~— - . .
I Englne] *
. Asum
Algebraic Operators |
0}
fE) Iage<20
Xpression ,
P Sailors
Generators
\. J
()
{ Input J Output
Plug-ins . Plug-ins)
s —
Yy 2
Data Sources) }

From query plan to code

Quer SELECT COUNT(*)
Y FROM Sailors
l [On-demand WHERE age < 20
— - . .
I Englne] *
. Asum
Algebraic Operators |
~ ~\ Odge<20
Expression ,
Generators |_Scluloi'
\. J
4 ~ while() {
{ Input J Output
Plug-ins . Plug-ins) }
= —
A/ \ 4
Data Sources) }

From query plan to code

SELECT COUNT(*)

Query FROM Sailors
l [On-demand WHERE age < 20
~ | Engine J. ‘_1_'
ASUM

Algebraic Operators |

o)
~ age<20

-
Expression
Sailors
\Generatorsj

4 ~N while(!eof(Sailors)) {
[Input Output read(age)
Plug-ins Plug-ins
g \ g Y,
R D }
\ 4 \ 4

Data Sources)

10

From query plan to code

SELECT COUNT(*)

Query FROM Sailors
l [On-demand WHERE age < 20
~ | Engine J. ‘_1_'
ASUM

Algebraic Operators
~ lo-age<20|

-
Expression .
P Sailors

Generators |_l_l
_ Yy,

4 ~N while(!eof(Sailors)) {
{ Input Output ;i?c)i(?ge)
Plug-ins Plug-ins
E; \ E; J }
i D }
\ 4 \ 4

Data Sources)

10

From query plan to code

SELECT COUNT (*)

Query FROM Sailors
l [On-demand WHERE age < 20
~ | Engine J. ‘_1_'
ASUM

Algebraic Operators
N lo-age<20|

-
Expression .
P Sailors

Generators |_l_l
_ Yy,

- ~ while(!eof(Sailors)) {
read(age)
|nPUt OUtP.Ut if(eval(age < 20)) {
Plug-ins . Plug-ins

/ }

A _ }
\ 4 \ 4

Data Sources)

10

From query plan to code

SELECT COUNT (*)

uer .
Query FROM Sailors
l [On-demand WHERE age < 20
~ - - ~
. sum
Algebraic Operators
- N ?dge<20
Expression :
Sailors
Generators |_l_l
_ J
s ~\ while(!eof(Sailors)) {
read(age)
Inplft OUtP.Ut if(eval(age < 20)) {
Plug-ins Plug-ins sum += 1
\ J }
- — } .
v v return out(sum,json)

Data Sources)

10

	Default Section
	Slide 1: CS460 Systems for Data Management and Data Science
	Slide 2: Today’s topic

	introduction
	Slide 3: (Simplified) DBMS Architecture
	Slide 4: Zoom in: Query Planner/Optimizer/Executor
	Slide 5: Query Plan

	processing - iterator
	Slide 6: Processing model
	Slide 7: Iterator Model (Volcano Model)
	Slide 8: Notation
	Slide 9: Example: Iterator Model
	Slide 10: Example: Iterator Model (cont)
	Slide 11: (Interpreted) Expression Evaluation
	Slide 12: Interpreted, tuple-at-a-time processing

	processing - Block oriented
	Slide 13: Processing model
	Slide 14: Block-oriented (aka materialization) model
	Slide 15: Block-oriented Model
	Slide 16: The (output) materialization problem – Naïve version
	Slide 17: The (output) materialization problem – version 2
	Slide 18: The (output) materialization problem – selection vector
	Slide 19: The (tuple) materialization problem
	Slide 20: Block-oriented model

	Processing - vectorization
	Slide 21: The beer analogy (by Marcin Zukowski): How to get 100 beers
	Slide 22: Processing model
	Slide 23: The middle ground: Vectorization model
	Slide 24: The middle ground: Vectorization model
	Slide 25: Vectorization model

	Query Compilation - intro
	Slide 26: Processing model
	Slide 27: Remark from Microsoft Hekaton
	Slide 28: Move from general to specialized code
	Slide 29: Query Compiler
	Slide 30: Two approaches for code generation

	Query compilation - Transpilation
	Slide 31: Transpilation use case: The HIQUE system
	Slide 32: Operator templates
	Slide 33: Integrating with the rest of the DBMS
	Slide 34: Indicative Performance [Krikellas, ICDE 2010]
	Slide 35: The catch [Krikellas, ICDE 2010]
	Slide 36: HIQUE take-home message

	Query compilation - Transpilation
	Slide 37: Transpilation use case: The HIQUE system
	Slide 38: Operator templates
	Slide 39: Integrating with the rest of the DBMS
	Slide 40: Indicative Performance [Krikellas, ICDE 2010]
	Slide 41: The catch [Krikellas, ICDE 2010]
	Slide 42: HIQUE take-home message

	Query compilation - Fusion - Motivation
	Slide 43: Two approaches for code generation
	Slide 44: Reminder: Operator templates
	Slide 45: Operator boundaries
	Slide 46: Generated code: more specialization

	Query compilation - Fusion - Composability vs Performance
	Slide 47: Operator abstractions – The good and the bad
	Slide 48: Operator abstractions – Through the looking glass
	Slide 49: Operator Fusion

	Query compilation - JIT
	Slide 50: Generate code for plan [HyPer]
	Slide 51: Push-based model for query compilation
	Slide 52: JIT compilation: The HyPer approach
	Slide 53: LLVM example: input and output
	Slide 54: The Catch
	Slide 55: (more)
	Slide 56: (Even more!)
	Slide 57: Query compilation

	Query compilation - Specialization for raw data
	Slide 58: Processing over RAW data
	Slide 59: Adapting to format
	Slide 60: RAW™ NoDB Platform

	Conclusion
	Slide 61: Conclusion
	Slide 62: Reading material
	Slide 63: Backup Slides

	Backup slides
	Slide 64: Compilation cost
	Slide 65: Volcano iterator model
	Slide 66: Volcano CPU costs
	Slide 67: Vectorized Query Execution
	Slide 68
	Slide 69
	Slide 70: Push-based model for query compilation
	Slide 71: The Catch
	Slide 72: (more)
	Slide 73: (Even more!)
	Slide 74: From query plan to code
	Slide 75: From query plan to code
	Slide 76: From query plan to code
	Slide 77: From query plan to code
	Slide 78: From query plan to code
	Slide 79: From query plan to code

