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Query Execution

“It is better to have 100 functions operate on one data structure than to have 10 functions operate on 10 data structures”

– Alan Perlis
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Today’s topic



(Simplified) DBMS Architecture
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Zoom in: Query Planner/Optimizer/Executor

4How the DBMS executes a query (plan)
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Query Plan

Operators are arranged in a tree.

Data flows from leaves to root.

Output of root = Query result.

5Composable algebra => composable execution



Processing model

The processing model of a DBMS defines how the system 
executes a query plan.

– Different trade-offs for different workloads

• Extreme I: Tuple-at-a-time via the iterator model

• Extreme II: Block-oriented model (typically column-at-a-time)

6



Iterator Model (Volcano Model)
Each query operator implements a next function.

• On each invocation, the operator returns either a single tuple 
or a marker that there are no more tuples

• next calls next on the operator’s children to retrieve and 
process their tuples

7Common operator interface => composability

class Operator:

Optional<Tuple> next() 

class Project:

Operator input, Expression proj

Optional<Tuple> next():

t = input.next()

if (t empty) return empty

return proj(t)

class Filter:

Operator input, Expression pred

Optional<Tuple> next():

while (true):

t = input.next()

if (t empty or pred(t)) return t



Notation
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class Operator:

Optional<Tuple> next() 

class Project:

Operator input, Expression proj

Optional<Tuple> next():

t = input.next()

if (t empty) return empty

return proj(t)

class Filter:

Operator input, Expression pred

Optional<Tuple> next():

while (true):

t = input.next()

if (t empty or pred(t)) return t

class Project:

Operator input, Expression proj

generator<Tuple> Next():

for t in input.Next():

emit proj(t)

class Filter:

Operator input, Expression pred

generator<Tuple> next():

for t in input.Next():

if pred(t) emit t

class Operator:

generator<Tuple> Next()



Example: Iterator Model
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Example: Iterator Model (cont)
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(Interpreted) Expression Evaluation

Nodes in the tree represent
different expression types:

• Comparisons (=, <, >, !=)

• Conjunction (AND), Disjunction (OR)

• Arithmetic Operators (+,-,*,/,%)

• Constant Values

• Tuple Attribute References
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AND

>=

Attribute(B.c) Attribute(B.d) Attribute(val) Constant(100)

SELECT A.id, B.value
FROM A, B

WHERE A.id = B.id
AND B.c = B.d
AND B.value > 100

class Filter:

Operator input

Expression pred = (B.c = B.d) AND (B.value > 100)

generator<Tuple> next(): …



Interpreted, tuple-at-a-time processing
The DBMS traverses the tree.
For each node that it visits, it has to figure out
what the operator needs to do. Same for expressions.

This happens for every… single… tuple…
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Many function calls

• Save/restore contents of CPU registers

• Force new instruction stream in the 
pipeline → bad for instruction cache

Generic code

• Has to cover every table, datatype, query



Processing model

The processing model of a DBMS defines how the system 
executes a query plan.

– Different trade-offs for different workloads

• Extreme I: Tuple-at-a-time via the iterator model

• Extreme II: Block-oriented model (typically column-at-a-time)

13



Block-oriented (aka materialization) model

Each operator processes its input all at once and emits its output 
all at once

• The operator “materializes” its output as a single result.

• Often bottom-up plan processing.
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class Operator:

Tuples Output() 

class Project:

Operator input, Expression proj

Tuples Output():

out = {}

for t in input.Output():

out.append(proj(t))

return out

class Filter:

Operator input, Expression pred

Tuples Output():

out = {}

for t in input.Output():

if pred(t) out.append(t)

return out



Block-oriented Model
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The (output) materialization problem – Naïve version

SELECT Name
FROM tbl

WHERE Age  > 20 

AND Dept = “HR”

16

tbl

𝜎𝑎𝑔𝑒>20 𝜎𝑑𝑒𝑝𝑡=𝐻𝑅
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HR

HR
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2
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tid
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3

⋈

tid

1
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Age
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tid
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The (output) materialization problem – version 2

SELECT Name
FROM tbl

WHERE Age  > 20 

AND Dept = “HR”
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tid as extra filter to reduce output! 
Can we reduce it further?



The (output) materialization problem – selection vector

SELECT Name
FROM tbl

WHERE Age  > 20 

AND Dept = “HR”

18tbl
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• Only materialize bitmap
• Perform calculations 

only for relevant tuples



The (tuple) materialization problem

• When joining tables, columns can get shuffled 
=> Cannot use virtual ids
=> Stitching causes random accesses
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tid Name

1 John

3 Jane

2 Jack

⋈

tbl2 tbl1

tbl2.name=tbl1.name

tbl1.age

The order of tbl1.name entries
can change after the join!!!

tid Age

1 22

2 19

3 37

Solution 2: Sort list of tids before projection

Solution 1: Stitch columns before join

Solution 3: Use order-preserving join algorithm (eg jive-join) – but not always applicable



✓No next() calls -> no per-tuple overhead

✓Typically combined with columnar storage
▪ Cache-friendly

▪ SIMD-friendly

▪ “Run same operation over consecutive data”

✓Avoid interpretation when evaluating expressions (in most cases)
– Typically use macros to produce 1000s of micro-operators (!!!)

• selection_gt_int32(int *in, int pred, int *out)

▪ selection_lt_int32(int *in, int pred, int *out)

▪ …

- Output materialization is costly (in terms of memory bandwidth)

Block-oriented model

20



The beer analogy (by Marcin Zukowski): 
How to get 100 beers

Tuple-at-a-time execution:

• Go to the store

• Pick a beer bottle

• Pay at register

• Walk Home

• Put beer in fridge

Repeat till you have 100 beers

Many unnecessary steps
21

Column-at-a-time execution

• Go to the store

• Take 100 beers

• Pay at register

• Walk Home

100 beers not easy to carry



Processing model

The processing model of a DBMS defines how the system 
executes a query plan.

– Different trade-offs for different workloads

• Extreme I: Tuple-at-a-time via the iterator model

• Middle Ground: Vectorization model

• Extreme II: Block-oriented model (typically column-at-a-time)

22



The middle ground: Vectorization model

• Like iterator model, each operator implements a next function

• Each operator emit a vector of tuples instead of a single tuple

– Vector-at-a-time, aka “Carry a crate of beers at a time”!

– The operator’s internal loop processes multiple tuples at a time.

– Vector size varies based on hardware or query properties

• General idea: Vector must fit in CPU cache

23



The middle ground: Vectorization model

• Like iterator model, each operator implements a next function

• Each operator emits a vector of tuples instead of a single tuple

24

class Operator:

Optional<Vector<Tuple>> next() 

class Project:

Operator input, Expression proj

Optional<Vector<Tuple>> next():

vec = input.next()

if (vec empty) return empty

out = {}

for t in vec:

out.add(proj(t))

return out

class Filter:

Operator input, Expression pred

Optional<Vector<Tuple>> next():

while (true):

vec = input.next()

if (vec empty) return vec

out = {}

for t in vec:

if pred(t): out.add(t)

return out



Vectorization model

Ideal for OLAP queries

• Greatly reduces the number of invocations per operator

• Allows for operators to use vectorized (SIMD) instructions to 
process batches of tuples

• Basic model commercialized by 

25



Processing model

The processing model of a DBMS defines how the system 
executes a query plan.

– Different trade-offs for different workloads

• Extreme I: Tuple-at-a-time via the iterator model

• Query compilation

• Vectorization model

• Extreme II: Block-oriented model (typically column-at-a-time)

26



Remark from Microsoft Hekaton

After switching to an in-memory DBMS, the only way to increase 
throughput is to reduce the number of instructions executed.

– To go 10x faster, the DBMS must execute 90% fewer instructions

– To go 100x faster, the DBMS must execute 99% fewer instructions

The only way to achieve such a reduction in the number 
of instructions is through code specialization.

– Generate code that is specific to a particular task in the DBMS.

– (Currently, most code is written to be understandable)

27



Move from general to specialized code

• CPU-intensive code parts can be natively compiled if they have 
a similar execution pattern on different inputs
– Access Methods

– Operator Execution

– Predicate Evaluation

• Goal: Avoid runtime decisions! Decide once, when you see the 
query plan!

28

• Attribute types

=> (Inline) pointer casting instead of 
data access (virtual) function calls

• Query predicate types

=>  data comparisons



Query Compiler
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Two approaches for code generation

Transpilation

• DBMS converts a query plan into imperative source code

• Compile the produced code to generate native code with a 
conventional compiler

JIT compilation

• Generate an intermediate representation (IR) of the query that 
can be quickly compiled into native code.

30



Transpilation use case: The HIQUE system

• HIQUE: Holistic Integrated QUery Engine

• For a given query plan, create a C program that implements 
that query’s execution plan. 
→ Bake in all the predicates and type conversions. 

• Advantages: 
– Fewer function calls during query evaluation

– Generated code uses cache-resident data more efficiently

– Compiler optimization techniques come free

• Off-the-shelf compiler converts code into a shared object, links 
it to the DBMS process, and then invokes the exec function.

31



Operator templates
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SELECT * FROM A WHERE A.val = ? + 1

Interpreted plan Templated plan

for t in range(table.num_tuples): 

tuple = get_tuple(table, t)

if eval(predicate, tuple, params): 

emit(tuple) 

1. Get schema in catalog for table

2. Calculate offset based on tuple 

size

3. Return pointer to tuple

1. Traverse predicate tree – pull values 

up

2. For tuple values, calculate the offset 

of the target attribute

3. Resolve datatype (switch / virtual 
call)

4. Return true/false

tuple_size = ### 

predicate_offset = ### 

parameter_value = ###

for t in 

range(table.num_tuples): 

tuple = table.data + t ∗
tuple_size

val = (tuple+predicate_offset) 

if (val == parameter_value + 1): 

emit(tuple) 

Known at query

compile time



Integrating with the rest of the DBMS

• The generated query code can invoke any other function in the 
DBMS → no need to generate code for the whole DB!

• Re-use the same components as interpreted queries.
– Concurrency control

– Logging and checkpoints

– Indexes

33



Indicative Performance [Krikellas, ICDE 2010]

34

Up to 2 orders of magnitude reported 
improvement when compared to

interpreted DBs 
(e.g., PostgreSQL)



The catch [Krikellas, ICDE 2010]

35

Compilation takes time!

In practice, ~1 second is not a big issue for OLAP queries

• An OLAP query may take tens to hundreds of seconds
• How about OLTP queries?
• Hint: In OLTP, we know the typical queries → pre-compile and cache



HIQUE take-home message

• Reduce function calls

• Specialized code → avoid type-checking, smaller code, 
promote cache reuse

BUT

• Compilation takes time

• Sticks to the operator “legacy” abstraction

36



Transpilation use case: The HIQUE system

• HIQUE: Holistic Integrated QUery Engine

• For a given query plan, create a C program that implements 
that query’s execution plan. 
→ Bake in all the predicates and type conversions. 

• Advantages: 
– Fewer function calls during query evaluation

– Generated code uses cache-resident data more efficiently

– Compiler optimization techniques come free

• Off-the-shelf compiler converts code into a shared object, links 
it to the DBMS process, and then invokes the exec function.

37



Operator templates

38

SELECT * FROM A WHERE A.val = ? + 1

Interpreted plan Templated plan

for t in range(table.num_tuples): 

tuple = get_tuple(table, t)

if eval(predicate, tuple, params): 

emit(tuple) 

1. Get schema in catalog for table

2. Calculate offset based on tuple 

size

3. Return pointer to tuple

1. Traverse predicate tree – pull values 

up

2. For tuple values, calculate the offset 

of the target attribute

3. Resolve datatype (switch / virtual 
call)

4. Return true/false

tuple_size = ### 

predicate_offset = ### 

parameter_value = ###

for t in 

range(table.num_tuples): 

tuple = table.data + t ∗
tuple_size

val = (tuple+predicate_offset) 

if (val == parameter_value + 1): 

emit(tuple) 

Known at query

compile time



Integrating with the rest of the DBMS

• The generated query code can invoke any other function in the 
DBMS → no need to generate code for the whole DB!

• Re-use the same components as interpreted queries.
– Concurrency control

– Logging and checkpoints

– Indexes

39



Indicative Performance [Krikellas, ICDE 2010]
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Up to 2 orders of magnitude reported 
improvement when compared to

interpreted DBs 
(e.g., PostgreSQL)



The catch [Krikellas, ICDE 2010]
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Compilation takes time!

In practice, ~1 second is not a big issue for OLAP queries

• An OLAP query may take tens to hundreds of seconds
• How about OLTP queries?
• Hint: In OLTP, we know the typical queries → pre-compile and cache



HIQUE take-home message

• Reduce function calls

• Specialized code → avoid type-checking, smaller code, 
promote cache reuse

BUT

• Compilation takes time

• Sticks to the operator “legacy” abstraction

42



Two approaches for code generation

Transpilation

• DBMS converts a query plan into imperative source code

• Compile the produced code to generate native code with a 
conventional compiler

JIT compilation

• Generate an intermediate representation (IR) of the query that 
can be quickly compiled into native code.

43



Reminder: Operator templates
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SELECT * FROM A WHERE A.val = ? + 1

Templated plan

tuple_size = ### 

predicate_offset = ### 

parameter_value = ###

for t in 

range(table.num_tuples): 

tuple = table.data + t ∗
tuple_size

val = *(tuple+predicate_offset) 

if (val == parameter_value + 1): 

emit(tuple) 

Interpreted plan

for t in range(table.num_tuples): 

tuple = get_tuple(table, t)

if eval(predicate, tuple, params): 

emit(tuple) 



Operator boundaries

45

tuple_size = ### 

predicate_offset = ### 

(val_offset)

for t in 

range(table.num_tuples): 

tuple = table.data + t ∗
tuple_size

val = *(tuple+predicate_offset) 

if (val == parameter_value + 1): 

emit(tuple) 
tuple2_size = ###

key_offset = ### (d_offset)

for t in 

range(emitted.num_tuples): 

t2 = emitted.data + t ∗
tuple2_size

k = hash(*(t2+key_offset) )

while (probe_ht(k)): 

Main:

execute(Op-1)

execute(Op-2)

…

execute(Op-n)

SELECT A.a + B.b

FROM A, B

WHERE A.val = ? + 1 

AND B.c = A.d

σ

⋈



Generated code: more specialization
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tuple_size = ### 

predicate_offset = ### 

(val_offset)

parameter_value = ###

for t in 

range(table.num_tuples): 

tuple = table.data + t ∗
tuple_size

val = *(tuple+predicate_offset) 

if (val == parameter_value + 1): 

emit(tuple) 

tuple2_size = ###

key_offset = ### (d_offset)

for t in 

range(emitted.num_tuples): 

t2 = emitted.data + t ∗
tuple2_size

k = hash(*(t2+key_offset) )

while (probe_ht(k)): 

SELECT A.a + B.b

FROM A, B

WHERE A.val = ? + 1 

AND B.c = A.d

⋈

σ

σ

tuple_size = ### 
predicate_offset = ### (val_offset)
parameter_value = ###
key_offset = ### (d_offset)

for t in range(table.num_tuples):
tuple = table.data + t ∗ tuple_size
val = *(tuple+predicate_offset) 
if (val == parameter_value + 1): 

k = hash(*(tuple+key_offset) 
while (probe_ht(k)): 

emit(t2, probe_match) 

⋈



Operator abstractions – The good and the bad

• Composability – Express complex logic using small modules

• Modularity – Develop each component independently

• Artificial boundaries – Cost of modularity (?)

47



Operator abstractions – Through the looking glass

Composability
Express complex logic 
using small modules

Modularity
Develop each component 

independently

48

Artificial boundaries

Functionality & DBMS 

Dev
Query 

Execution



Operator Fusion

Composability
Express complex logic 
using small modules

Modularity
Develop each component 

independently

49

Blurred operator boundaries

Functionality & DBMS 

Dev
Query 

Execution

HyPer



Generate code for plan [HyPer]

50Operator boundaries blurred – Imperative execution

for each tuple 𝑡3 in 𝑅3
for each match 𝑡2 in ⨝𝑧=𝑐[𝑡3. c]

for each match 𝑡1 in ⨝𝑎=𝑏[𝑡3. b]
output 𝑡1 ᴏ 𝑡2 ᴏ 𝑡3

for each tuple t in 𝑅1
if t.x = 7

materialize t in hash table of 
⨝𝑎=𝑏
for each tuple t in 𝑅2

if t.y = 3
aggregate and materialize into Γ𝑧

for each tuple t in Γ𝑧
materialize t in hash table of ⨝𝑧=𝑐



Push-based model for query compilation
❑ Data pushed up the pipeline

❑ Materializing only at pipeline 
breakers

❑ No function calls in loops => 
Compiler distributes data to 
registers and increases 
cache reuse. 
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for each tuple 𝑡3 in 𝑅3
for each match 𝑡2 in ⨝𝑧=𝑐[𝑡3. c]

for each match 𝑡1 in ⨝𝑎=𝑏[𝑡3. b]
output 𝑡1 ᴏ 𝑡2 ᴏ 𝑡3

for each tuple t in 𝑅1
if t.x = 7

materialize t in hash table of 
⨝𝑎=𝑏
for each tuple t in 𝑅2

if t.y = 3
aggregate t in hash table of Γ𝑧

for each tuple t in Γ𝑧
materialize t in hash table of ⨝𝑧=𝑐



JIT compilation: The HyPer approach
• HyPer goal: “Keep a tuple in CPU registers as long as possible”

– Push data through execution plan

– Blur operator boundaries

• Generate code using LLVM

• LLVM: Collection of modular and reusable compiler and 
toolchain technologies. 

• Core component is a low-level programming language (IR) that 
is similar to assembly. 

• Not all of the DBMS components need to be written in LLVM IR.
→ LLVM code can make calls to C++ code. 

52



LLVM example: input and output

• Produced code very close to assembly

• Compilation very fast (tens of milliseconds!) 53

int mul_add(int x, int y, int z) {   
return x * y + z; 

} 

define i32 @mul_add(i32 %x, i32 %y, i32 %z) { 
entry: 
%tmp = mul i32 %x, %y
%tmp2 = add i32 %tmp, %z 
ret i32 %tmp2 

}



The Catch select d_tax from warehouse, district where 
w_id=d_w_id and w_zip='…'

54

𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒

σ𝑤_𝑧𝑖𝑝



(more)

55

𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒

σ𝑤_𝑧𝑖𝑝

𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡

select d_tax from warehouse, district where 
w_id=d_w_id and w_zip='…'



(Even more!)

56Low-level, error-prone coding

𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡

⋈𝑤𝑖𝑑=𝑑_𝑤_𝑖𝑑

select d_tax from warehouse, district where 
w_id=d_w_id and w_zip='…'

σ𝑤_𝑧𝑖𝑝



Query compilation
• Pipelined query processing without interpretation cost

• Very painful to implement

• BUT: Benefits have led major DBMS (and Spark!) to implement it

57



Specialize access paths to formats

CSV JSON.bin

Query

CSV JSON.bin

DBMS
T

ra
n

sf
o

rm

Query

Processing over RAW data

Proteus
Plug-in per data source

Generic-purpose scan operator

Traditional DBMS: 

Data adapts to engine



Adapting to format
• Unroll Columns

• Data Types

• Free navigation in files

59

//read field from file 

raw = readNextFieldFromFile(file) 

switch (schemaDataType[column]) 

case IntType: datum = 

convertToInteger(raw) 

case FloatType: datum = 
convertToFloat(raw)

- fieldLength:10
- tupleLength:100
- Need fields 2 & 5

of 2nd row

moveTo(110);
readInt();
moveTo(140);
readFloat();

∀col:
if col needed:
... 

skipField();
skipRest();



RAW NoDB Platform

60©2019 RAW Labs SA

Enterprise
Systems

Data
Warehouses

Data 
Lakes

External
Sources

Operational 
Systems

Single Query Engine

Business
Applications

Business 
Intelligence

Data Cleaning
& Export

ML & AI
Data Preparation

Data
Discovery

(Social Media, Weather…)(Hadoop, S3, Azure…)(Teradata, Oracle…)(CRM, ERP, SCM…)(Sensor data, Scada…)

Unified Virtual Data Lake



Conclusion

The processing model of a DBMS defines how the system 
executes a query plan.

• Tuple-at-a-time via the iterator model

• Query compilation

• Vectorization model

• Block-oriented model (typically column-at-a-time)

61

Hybrids 

do exist!!!



Reading material
• COW Book chapters 12

• M. Zukowski et al: MonetDB/X100 - A DBMS In The CPU Cache. IEEE 2005: 
https://ir.cwi.nl/pub/11098/11098B.pdf

• T. Neumann: Efficiently Compiling Efficient Query Plans for Modern 
Hardware VLDB 2011: https://www.vldb.org/pvldb/vol4/p539-
neumann.pdf
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Backup Slides
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Compilation cost
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r1

r1

r1

r1

Volcano iterator model

65

𝛤𝑠𝑢𝑚

𝜎

𝜋

𝑆𝑐𝑎𝑛

R

⚫ Pull-based Interface: open/next/close

⚫ Tuple-at-a-time processing

⚫ Each operator produces a tuple stream

next()

next()

next()

next()

Simple interface, pipelined execution



Volcano CPU costs

⚫ Control flow constantly changing

⚫ Many (virtual) function calls

⚫ Branch mispredictions

66“Real Work” a fraction of total execution

[Graefe]



Vectorized Query Execution

67

Pros Cons

Fewer next() calls Materializing costs

Good locality

Less branching

⚫ Column-store implementation

⚫ Iterators return blocks

𝛤𝑠𝑢𝑚

𝜎

𝜋

𝑆𝑐𝑎𝑛

R

Efficient control flow, but wasteful to bandwidth

[Zukowski]



68

Source:

PhD thesis of 

K. Krikellas

Generic code is more and slower!

http://homepages.inf.ed.ac.uk/mc/Publications/krikellas_thesis.pdf
http://homepages.inf.ed.ac.uk/mc/Publications/krikellas_thesis.pdf


69

Source:

PhD thesis of 

K. Krikellas

Exercise:
• Compare the two code snippets.

• Which is better? Why?

http://homepages.inf.ed.ac.uk/mc/Publications/krikellas_thesis.pdf
http://homepages.inf.ed.ac.uk/mc/Publications/krikellas_thesis.pdf


Push-based model for query compilation

❑ Data pushed up the pipeline

❑ Materializing only at pipeline 
breakers

❑ No function calls in loops => 
Compiler distributes data to 
registers and increases 
cache reuse. 

70
Execute without “spilling data to memory”



The Catch select d_tax from warehouse, district where 
w_id=d_w_id and w_zip='…'

71

𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒

σ𝑤_𝑧𝑖𝑝

𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡

⋈𝑤𝑖𝑑=𝑑_𝑤_𝑖𝑑



(more)

72

𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒

σ𝑤_𝑧𝑖𝑝

𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡

⋈𝑤𝑖𝑑=𝑑_𝑤_𝑖𝑑

select d_tax from warehouse, district where 
w_id=d_w_id and w_zip='…'



(Even more!)

73Low-level, error-prone coding

𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒

σ𝑤_𝑧𝑖𝑝

𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡

⋈𝑤𝑖𝑑=𝑑_𝑤_𝑖𝑑

select d_tax from warehouse, district where 
w_id=d_w_id and w_zip='…'



From query plan to code

10

SELECT COUNT(*)
FROM Sailors
WHERE age < 20

Δ𝑠𝑢𝑚

𝜎𝑎𝑔𝑒<20

𝑆𝑎𝑖𝑙𝑜𝑟𝑠

Data Sources

Expression
Generators

Output 
Plug-ins

Input 
Plug-ins

Algebraic Operators

Query

On-demand
Engine



From query plan to code

10

SELECT COUNT(*)
FROM Sailors
WHERE age < 20

Δ𝑠𝑢𝑚

𝜎𝑎𝑔𝑒<20

𝑆𝑎𝑖𝑙𝑜𝑟𝑠

Data Sources

Expression
Generators

Output 
Plug-ins

Input 
Plug-ins

Algebraic Operators

Query

On-demand
Engine

while() {

}



From query plan to code

10

SELECT COUNT(*)
FROM Sailors
WHERE age < 20

Δ𝑠𝑢𝑚

𝜎𝑎𝑔𝑒<20

𝑆𝑎𝑖𝑙𝑜𝑟𝑠

Data Sources

Expression
Generators

Output 
Plug-ins

Input 
Plug-ins

Algebraic Operators

Query

On-demand
Engine

while(!eof(Sailors)) {
read(age)

}



From query plan to code

10

SELECT COUNT(*)
FROM Sailors
WHERE age < 20

Δ𝑠𝑢𝑚

𝜎𝑎𝑔𝑒<20

𝑆𝑎𝑖𝑙𝑜𝑟𝑠

Data Sources

Expression
Generators

Output 
Plug-ins

Input 
Plug-ins

Algebraic Operators

Query

On-demand
Engine

while(!eof(Sailors)) {
read(age)
if() {

}
}



From query plan to code

10

SELECT COUNT(*)
FROM Sailors
WHERE age < 20

Δ𝑠𝑢𝑚

𝜎𝑎𝑔𝑒<20

𝑆𝑎𝑖𝑙𝑜𝑟𝑠

Data Sources

Expression
Generators

Output 
Plug-ins

Input 
Plug-ins

Algebraic Operators

Query

On-demand
Engine

while(!eof(Sailors)) {
read(age)
if(eval(age < 20)) {

} 
}



From query plan to code

10

SELECT COUNT(*)
FROM Sailors
WHERE age < 20

Δ𝑠𝑢𝑚

𝜎𝑎𝑔𝑒<20

𝑆𝑎𝑖𝑙𝑜𝑟𝑠

Data Sources

Expression
Generators

Output 
Plug-ins

Input 
Plug-ins

Algebraic Operators

Query

On-demand
Engine

while(!eof(Sailors)) {
read(age)
if(eval(age < 20)) {
sum += 1

} 
}
return out(sum,json)
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